@database "mathieeesingtrans" @master "AMIDEV:NDK/Autodocs/mathieeesingtrans.doc" @Node Main "mathieeesingtrans.doc" @toc "Autodocs/AG/INDEX/Main" @{" IEEESPAcos() " Link "IEEESPAcos()"} @{" IEEESPAsin() " Link "IEEESPAsin()"} @{" IEEESPAtan() " Link "IEEESPAtan()"} @{" IEEESPCos() " Link "IEEESPCos()"} @{" IEEESPCosh() " Link "IEEESPCosh()"} @{" IEEESPExp() " Link "IEEESPExp()"} @{" IEEESPFieee() " Link "IEEESPFieee()"} @{" IEEESPLog() " Link "IEEESPLog()"} @{" IEEESPLog10() " Link "IEEESPLog10()"} @{" IEEESPPow() " Link "IEEESPPow()"} @{" IEEESPSin() " Link "IEEESPSin()"} @{" IEEESPSincos() " Link "IEEESPSincos()"} @{" IEEESPSinh() " Link "IEEESPSinh()"} @{" IEEESPSqrt() " Link "IEEESPSqrt()"} @{" IEEESPTan() " Link "IEEESPTan()"} @{" IEEESPTanh() " Link "IEEESPTanh()"} @{" IEEESPTieee() " Link "IEEESPTieee()"} @EndNode @Node "IEEESPAcos()" "mathieeesingtrans.library/IEEESPAcos" @{b} NAME@{ub} IEEESPAcos -- compute the arc cosine of a number @{b} SYNOPSIS@{ub} x = IEEESPAcos( y ); d0 d0 float x,y; @{b} FUNCTION@{ub} Compute arc cosine of y in IEEE single precision @{b} INPUTS@{ub} y - IEEE single precision floating point value @{b} RESULT@{ub} x - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @{"IEEESPCos()" Link "IEEESPCos()"}, @{"IEEESPAtan()" Link "IEEESPAtan()"}, @{"IEEESPAsin()" Link "IEEESPAsin()"} @EndNode @Node "IEEESPAsin()" "mathieeesingtrans.library/IEEESPAsin" @{b} NAME@{ub} IEEESPAsin -- compute the arcsine of a number @{b} SYNOPSIS@{ub} x = IEEESPAsin( y ); d0 d0 float x,y; @{b} FUNCTION@{ub} Compute the arc sine of y in IEEE single precision @{b} INPUTS@{ub} y - IEEE single precision floating point value @{b} RESULT@{ub} x - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @{"IEEESPSin()" Link "IEEESPSin()"}, @{"IEEESPAtan()" Link "IEEESPAtan()"}, @{"IEEESPAcos()" Link "IEEESPAcos()"} @EndNode @Node "IEEESPAtan()" "mathieeesingtrans.library/IEEESPAtan" @{b} NAME@{ub} IEEESPAtan -- compute the arc tangent of number @{b} SYNOPSIS@{ub} x = IEEESPAtan( y ); d0 d0 single x,y; @{b} FUNCTION@{ub} Compute arctangent of y in IEEE single precision @{b} INPUTS@{ub} y - IEEE single precision floating point value @{b} RESULT@{ub} x - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @EndNode @Node "IEEESPCos()" "mathieeesingtrans.library/IEEESPCos" @{b} NAME@{ub} IEEESPCos -- compute the cosine of a floating point number @{b} SYNOPSIS@{ub} x = IEEESPCos( y ); d0 d0 float x,y; @{b} FUNCTION@{ub} Compute cosine of y in IEEE single precision @{b} INPUTS@{ub} y - IEEE single precision floating point value @{b} RESULT@{ub} x - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @{"IEEESPAcos()" Link "IEEESPAcos()"}, @{"IEEESPSin()" Link "IEEESPSin()"}, @{"IEEESPTan()" Link "IEEESPTan()"} @EndNode @Node "IEEESPCosh()" "mathieeesingtrans.library/IEEESPCosh" @{b} NAME@{ub} IEEESPCosh -- compute the hyperbolic cosine of a floating point number @{b} SYNOPSIS@{ub} x = IEEESPCosh( y ); d0 d0 float x,y; @{b} FUNCTION@{ub} Compute hyperbolic cosine of y in IEEE single precision @{b} INPUTS@{ub} y - IEEE single precision floating point value @{b} RESULT@{ub} x - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @{"IEEESPSinh()" Link "IEEESPSinh()"}, @{"IEEESPTanh()" Link "IEEESPTanh()"} @EndNode @Node "IEEESPExp()" "mathieeesingtrans.library/IEEESPExp" @{b} NAME@{ub} IEEESPExp -- compute the exponential of e @{b} SYNOPSIS@{ub} x = IEEESPExp( y ); d0 d0 float x,y; @{b} FUNCTION@{ub} Compute e^y in IEEE single precision @{b} INPUTS@{ub} y - IEEE single precision floating point value @{b} RESULT@{ub} x - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @{"IEEESPLog()" Link "IEEESPLog()"} @EndNode @Node "IEEESPFieee()" "mathieeesingtrans.library/IEEESPFieee" @{b} NAME@{ub} IEEESPFieee -- convert IEEE single to IEEE single @{b} SYNOPSIS@{ub} x = IEEESPFieee( y ); d0 d0 float y; float x; @{b} FUNCTION@{ub} Convert IEEE single precision number to IEEE single precision. These are included for completeness although they just return the input parameter. A good way to remember how these functions work is: They convert to and from the local format to Single Precision IEEE. The local format for this library happens to also be Single Precision IEEE. @{b} INPUTS@{ub} y - IEEE single precision floating point value @{b} RESULT@{ub} x - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @{"IEEESPTieee()" Link "IEEESPTieee()"} @EndNode @Node "IEEESPLog()" "mathieeesingtrans.library/IEEESPLog" @{b} NAME@{ub} IEEESPLog -- compute the natural logarithm of a floating point number @{b} SYNOPSIS@{ub} x = IEEESPLog( y ); d0 d0 float x,y; @{b} FUNCTION@{ub} Compute ln(y) in IEEE single precision @{b} INPUTS@{ub} y - IEEE single precision floating point value @{b} RESULT@{ub} x - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @{"IEEESPExp()" Link "IEEESPExp()"} @EndNode @Node "IEEESPLog10()" "mathieeesingtrans.library/IEEESPLog10" @{b} NAME@{ub} IEEESPLog10 -- compute logarithm base 10 of a number @{b} SYNOPSIS@{ub} x = IEEESPLog10( y ); d0 d0 float x,y; @{b} FUNCTION@{ub} Compute the logarithm base 10 of y in IEEE single precision @{b} INPUTS@{ub} y - IEEE single precision floating point value @{b} RESULT@{ub} x - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @{"IEEESPLog()" Link "IEEESPLog()"} @EndNode @Node "IEEESPPow()" "mathieeesingtrans.library/IEEESPPow" @{b} NAME@{ub} IEEESPPow -- raise a number to another number power @{b} SYNOPSIS@{ub} z = IEEESPPow( x , y ); d0 d1 d0 float x,y,z; @{b} FUNCTION@{ub} Compute y^x in IEEE single precision @{b} INPUTS@{ub} x - IEEE single precision floating point value y - IEEE single precision floating point value @{b} RESULT@{ub} z - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @EndNode @Node "IEEESPSin()" "mathieeesingtrans.library/IEEESPSin" @{b} NAME@{ub} IEEESPSin -- compute the sine of a floating point number @{b} SYNOPSIS@{ub} x = IEEESPSin( y ); d0 d0 float x,y; @{b} FUNCTION@{ub} Compute sine of y in IEEE single precision @{b} INPUTS@{ub} y - IEEE single precision floating point value @{b} RESULT@{ub} x - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @{"IEEESPAsin()" Link "IEEESPAsin()"}, @{"IEEESPTan()" Link "IEEESPTan()"}, @{"IEEESPCos()" Link "IEEESPCos()"} @EndNode @Node "IEEESPSincos()" "mathieeesingtrans.library/IEEESPSincos" @{b} NAME@{ub} IEEESPSincos -- compute the arc tangent of a floating point number @{b} SYNOPSIS@{ub} x = IEEESPSincos( z , y ); d0 a0 d0 float x,y,*z; @{b} FUNCTION@{ub} Compute sin and cosine of y in IEEE single precision. Store the cosine in *z. Return the sine of y. @{b} INPUTS@{ub} y - IEEE single precision floating point value z - pointer to IEEE single precision floating point number @{b} RESULT@{ub} x - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @{"IEEESPSin()" Link "IEEESPSin()"}, @{"IEEESPCos()" Link "IEEESPCos()"} @EndNode @Node "IEEESPSinh()" "mathieeesingtrans.library/IEEESPSinh" @{b} NAME@{ub} IEEESPSinh -- compute the hyperbolic sine of a floating point number @{b} SYNOPSIS@{ub} x = IEEESPSinh( y ); d0 d0 float x,y; @{b} FUNCTION@{ub} Compute hyperbolic sine of y in IEEE single precision @{b} INPUTS@{ub} y - IEEE single precision floating point value @{b} RESULT@{ub} x - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @{"IEEESPCosh" Link "mathieeesingtrans/IEEESPCosh()"}, @{"IEEESPTanh" Link "mathieeesingtrans/IEEESPTanh()"} @EndNode @Node "IEEESPSqrt()" "mathieeesingtrans.library/IEEESPSqrt" @{b} NAME@{ub} IEEESPSqrt -- compute the square root of a number @{b} SYNOPSIS@{ub} x = IEEESPSqrt( y ); d0 d0 float x,y; @{b} FUNCTION@{ub} Compute square root of y in IEEE single precision @{b} INPUTS@{ub} y - IEEE single precision floating point value @{b} RESULT@{ub} x - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @EndNode @Node "IEEESPTan()" "mathieeesingtrans.library/IEEESPTan" @{b} NAME@{ub} IEEESPTan -- compute the tangent of a floating point number @{b} SYNOPSIS@{ub} x = IEEESPTan( y ); d0 d0 float x,y; @{b} FUNCTION@{ub} Compute tangent of y in IEEE single precision @{b} INPUTS@{ub} y - IEEE single precision floating point value @{b} RESULT@{ub} x - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @{"IEEESPAtan()" Link "IEEESPAtan()"}, @{"IEEESPSin()" Link "IEEESPSin()"}, @{"IEEESPCos()" Link "IEEESPCos()"} @EndNode @Node "IEEESPTanh()" "mathieeesingtrans.library/IEEESPTanh" @{b} NAME@{ub} IEEESPTanh -- compute the hyperbolic tangent of a floating point number @{b} SYNOPSIS@{ub} x = IEEESPTanh( y ); d0 d0 float x,y; @{b} FUNCTION@{ub} Compute hyperbolic tangent of y in IEEE single precision @{b} INPUTS@{ub} y - IEEE single precision floating point value @{b} RESULT@{ub} x - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @{"IEEESPSinh()" Link "IEEESPSinh()"}, @{"IEEESPCosh()" Link "IEEESPCosh()"} @EndNode @Node "IEEESPTieee()" "mathieeesingtrans.library/IEEESPTieee" @{b} NAME@{ub} IEEESPTieee -- convert IEEE single to IEEE single @{b} SYNOPSIS@{ub} x = IEEESPTieee( y ); d0 d0 float y; float x; @{b} FUNCTION@{ub} Convert IEEE single precision number to IEEE single precision. These are included for completeness although they just return the input parameter. A good way to remember how these functions work is: They convert to and from the local format to Single Precision IEEE. The local format for this library happens to also be Single Precision IEEE. @{b} INPUTS@{ub} y - IEEE single precision floating point value @{b} RESULT@{ub} x - IEEE single precision floating point value @{b} BUGS@{ub} @{b} SEE ALSO@{ub} @{"IEEESPFieee()" Link "IEEESPFieee()"} @EndNode