@database "mathtrans" @master "AMIDEV:NDK/Autodocs/mathtrans.doc" @Node Main "mathtrans.doc" @toc "Autodocs/AG/INDEX/Main" @{" SPAcos() " Link "SPAcos()"} @{" SPAsin() " Link "SPAsin()"} @{" SPAtan() " Link "SPAtan()"} @{" SPCos() " Link "SPCos()"} @{" SPCosh() " Link "SPCosh()"} @{" SPExp() " Link "SPExp()"} @{" SPFieee() " Link "SPFieee()"} @{" SPLog() " Link "SPLog()"} @{" SPLog10() " Link "SPLog10()"} @{" SPPow() " Link "SPPow()"} @{" SPSin() " Link "SPSin()"} @{" SPSincos() " Link "SPSincos()"} @{" SPSinh() " Link "SPSinh()"} @{" SPSqrt() " Link "SPSqrt()"} @{" SPTan() " Link "SPTan()"} @{" SPTanh() " Link "SPTanh()"} @{" SPTieee() " Link "SPTieee()"} @EndNode @Node "SPAcos()" "mathtrans.library/SPAcos" @{b} NAME@{ub} SPAcos - obtain the arccosine of the floating point number @{b} SYNOPSIS@{ub} fnum2 = SPAcos(fnum1); d0.l float fnum2; float fnum1; @{b} FUNCTION@{ub} Accepts a floating point number representing the cosine of an angle and returns the value of said angle in radians @{b} INPUTS@{ub} fnum1 - Motorola fast floating point number @{b} RESULT@{ub} fnum2 - Motorola fast floating point number @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPSin" Link "mathtrans/SPSin()"} @EndNode @Node "SPAsin()" "mathtrans.library/SPAsin" @{b} NAME@{ub} SPAsin - obtain the arcsine of the floating point number @{b} SYNOPSIS@{ub} fnum2 = SPAsin(fnum1); d0.l float fnum2; float fnum1; @{b} FUNCTION@{ub} Accepts a floating point number representing the sine of an angle and returns the value of said angle in radians @{b} INPUTS@{ub} fnum1 - Motorola fast floating point number @{b} RESULT@{ub} fnum2 - Motorola fast floating point number @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPCos" Link "mathtrans/SPCos()"} @EndNode @Node "SPAtan()" "mathtrans.library/SPAtan" @{b} NAME@{ub} SPAtan - obtain the arctangent of the floating point number @{b} SYNOPSIS@{ub} fnum2 = SPAtan(fnum1); d0.l float fnum2; float fnum1; @{b} FUNCTION@{ub} Accepts a floating point number representing the tangent of an angle and returns the value of said angle in radians @{b} INPUTS@{ub} fnum1 - Motorola fast floating point number @{b} RESULT@{ub} fnum2 - Motorola fast floating point number @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPTan" Link "mathtrans/SPTan()"} @EndNode @Node "SPCos()" "mathtrans.library/SPCos" @{b} NAME@{ub} SPCos - obtain the cosine of the floating point number @{b} SYNOPSIS@{ub} fnum2 = SPCos(fnum1); d0.l float fnum2; float fnum1; @{b} FUNCTION@{ub} Accepts a floating point number representing an angle in radians and returns the cosine of said angle. @{b} INPUTS@{ub} fnum1 - Motorola fast floating point number @{b} RESULT@{ub} fnum2 - Motorola fast floating point number @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPAcos" Link "mathtrans/SPAcos()"} @EndNode @Node "SPCosh()" "mathtrans.library/SPCosh" @{b} NAME@{ub} SPCosh - obtain the hyperbolic cosine of the floating point number @{b} SYNOPSIS@{ub} fnum2 = SPCosh(fnum1); d0.l float fnum2; float fnum1; @{b} FUNCTION@{ub} Accepts a floating point number representing an angle in radians and returns the hyperbolic cosine of said angle. @{b} INPUTS@{ub} fnum1 - Motorola fast floating point number @{b} RESULT@{ub} fnum2 - Motorola fast floating point number @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPSinh" Link "mathtrans/SPSinh()"} @EndNode @Node "SPExp()" "mathtrans.library/SPExp" @{b} NAME@{ub} SPExp - obtain the exponential (e**X) of the floating point number @{b} SYNOPSIS@{ub} fnum2 = SPExp(fnum1); d0.l float fnum2; float fnum1; @{b} FUNCTION@{ub} Accepts a floating point number and returns the value of e raised to the fnum1 power @{b} INPUTS@{ub} fnum1 - Motorola fast floating point number @{b} RESULT@{ub} fnum2 - Motorola fast floating point number @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPLog" Link "mathtrans/SPLog()"} @EndNode @Node "SPFieee()" "mathtrans.library/SPFieee" @{b} NAME@{ub} SPFieee - convert single precision ieee to FFP number @{b} SYNOPSIS@{ub} fnum = SPFieee(ieeenum); d0.l float fnum; float ieeenum; @{b} FUNCTION@{ub} Accepts a standard single precision format returns the same number, converted to Motorola fast floating point number @{b} INPUTS@{ub} ieeenum - IEEE Single Precision Floating Point @{b} RESULT@{ub} fnum - Motorola fast floating point number @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPTieee" Link "mathtrans/SPTieee()"} @EndNode @Node "SPLog()" "mathtrans.library/SPLog" @{b} NAME@{ub} SPLog - obtain the natural logarithm of the floating point number @{b} SYNOPSIS@{ub} fnum2 = SPLog(fnum1); d0.l float fnum2; float fnum1; @{b} FUNCTION@{ub} Accepts a floating point number and returns the natural logarithem (base e) of said number @{b} INPUTS@{ub} fnum1 - Motorola fast floating point number @{b} RESULT@{ub} fnum2 - Motorola fast floating point number If the argument is invalid, the V flag is set on on return. @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPExp" Link "mathtrans/SPExp()"} @EndNode @Node "SPLog10()" "mathtrans.library/SPLog10" @{b} NAME@{ub} SPLog10 - obtain the naperian logarithm(base 10) of the floating point number @{b} SYNOPSIS@{ub} fnum2 = SPLog10(fnum1); d0.l float fnum2; float fnum1; @{b} FUNCTION@{ub} Accepts a floating point number and returns the naperian logarithm (base 10) of said number @{b} INPUTS@{ub} fnum1 - Motorola fast floating point number @{b} RESULT@{ub} fnum2 - Motorola fast floating point number If the argument is invalid, the V flag is set on on return. @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPExp" Link "mathtrans/SPExp()"}, SpLog @EndNode @Node "SPPow()" "mathtrans.library/SPPow" @{b} NAME@{ub} SPPow - raise a number to a power @{b} SYNOPSIS@{ub} result = SPPow(fnum1, fnum2); d1.l d0.l float fnum1, fnum2; float result; @{b} FUNCTION@{ub} Accepts two floating point numbers and returns the result of fnum2 raised to the fnum1 power @{b} INPUTS@{ub} fnum1 - Motorola fast floating point number fnum2 - Motorola fast floating point number @{b} RESULT@{ub} result - Motorola fast floating point number On error, for example overflow, the V bit is set on return. @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPExp" Link "mathtrans/SPExp()"}, @{"SPLog" Link "mathtrans/SPLog()"} @EndNode @Node "SPSin()" "mathtrans.library/SPSin" @{b} NAME@{ub} SPSin - obtain the sine of the floating point number @{b} SYNOPSIS@{ub} fnum2 = SPSin(fnum1); d0.l float fnum2; float fnum1; @{b} FUNCTION@{ub} Accepts a floating point number representing an angle in radians and returns the sine of said angle. @{b} INPUTS@{ub} fnum1 - Motorola fast floating point number @{b} RESULT@{ub} fnum2 - Motorola fast floating point number @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPAsin" Link "mathtrans/SPAsin()"} @EndNode @Node "SPSincos()" "mathtrans.library/SPSincos" @{b} NAME@{ub} SPSincos - obtain the sine and cosine of a number @{b} SYNOPSIS@{ub} fnum3 = SPSincos(pfnum2, fnum1); d1.l, d0.l float *pfnum2; float fnum1; float fnum3; @{b} FUNCTION@{ub} Accepts a floating point number (fnum1) representing an angle in radians and a pointer to another floating point number (pfnum2). It computes the cosine and places it in *pfnum2. It computes the sine and returns it as a result. @{b} INPUTS@{ub} fnum1 - Motorola fast floating point number pfnum2 - pointer to Motorola fast floating point number @{b} RESULT@{ub} *pfnum2 - Motorola fast floating point number (cosine) fnum3 - Motorola fast floating point number (sine) @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPSin" Link "mathtrans/SPSin()"}, @{"SPCos" Link "mathtrans/SPCos()"} @EndNode @Node "SPSinh()" "mathtrans.library/SPSinh" @{b} NAME@{ub} SPSinh - obtain the hyperbolic sine of the floating point number @{b} SYNOPSIS@{ub} fnum2 = SPSinh(fnum1); d0.l float fnum2; float fnum1; @{b} FUNCTION@{ub} Accepts a floating point number representing an angle in radians and returns the hyperbolic sine of said angle. @{b} INPUTS@{ub} fnum1 - Motorola fast floating point number @{b} RESULT@{ub} fnum2 - Motorola fast floating point number @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPCosh" Link "mathtrans/SPCosh()"} @EndNode @Node "SPSqrt()" "mathtrans.library/SPSqrt" @{b} NAME@{ub} SPSqrt - obtain the square root of the floating point number @{b} SYNOPSIS@{ub} fnum2 = SPSqrt(fnum1); d0.l float fnum2; float fnum1; @{b} FUNCTION@{ub} Accepts a floating point number and returns the square toot of said number @{b} INPUTS@{ub} fnum1 - Motorola fast floating point number @{b} RESULT@{ub} fnum2 - Motorola fast floating point number @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPPow" Link "mathtrans/SPPow()"}, @{"SPMul" Link "mathffp/SPMul()"} @EndNode @Node "SPTan()" "mathtrans.library/SPTan" @{b} NAME@{ub} SPTan - obtain the tangent of the floating point number @{b} SYNOPSIS@{ub} fnum2 = SPTan(fnum1); d0.l float fnum2; float fnum1; @{b} FUNCTION@{ub} Accepts a floating point number representing an angle in radians and returns the tangent of said angle. @{b} INPUTS@{ub} fnum1 - Motorola fast floating point number @{b} RESULT@{ub} fnum2 - Motorola fast floating point number @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPAtan" Link "mathtrans/SPAtan()"} @EndNode @Node "SPTanh()" "mathtrans.library/SPTanh" @{b} NAME@{ub} SPTanh - obtain the hyperbolic tangent of the floating point number @{b} SYNOPSIS@{ub} fnum2 = SPTanh(fnum1); d0.l float fnum2; float fnum1; @{b} FUNCTION@{ub} Accepts a floating point number representing an angle in radians and returns the hyperbolic tangent of said angle. @{b} INPUTS@{ub} fnum1 - Motorola fast floating point number @{b} RESULT@{ub} fnum2 - Motorola fast floating point number @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPSinh" Link "mathtrans/SPSinh()"}, @{"SPCosh" Link "mathtrans/SPCosh()"} @EndNode @Node "SPTieee()" "mathtrans.library/SPTieee" @{b} NAME@{ub} SPTieee - convert FFP number to single precision ieee @{b} SYNOPSIS@{ub} ieeenum = SPTieee(fnum); d0.l float ieeenum; float fnum; @{b} FUNCTION@{ub} Accepts a Motorola fast floating point number and returns the same number, converted into IEEE standard single precision format @{b} INPUTS@{ub} fnum - Motorola fast floating point number @{b} RESULT@{ub} ieeenum - IEEE Single Precision Floating Point @{b} BUGS@{ub} None @{b} SEE ALSO@{ub} @{"SPFieee" Link "mathtrans/SPFieee()"} @EndNode