SANA-II Network Device Driver Specification

Amiga Networking Group
Randell Jesup, Kenneth Dyke
Revised by Heinz Wrobel

Revision 3.1
15 December 2002

Warning

The information contained herein is subject to change without notice.
Amiga specifically does not make any endorsement or representation
with respect to the use, results, or performance of the information (in-
cluding without limitation its capabilities, appropriateness, reliability,
currentness or availability).

Disclaimer

This information is provided “As Is” without warranty of any kind, ei-
ther express or implied. The entire risk as to the use of this information
is assumed by the user. In no event will Amiga or its affiliated com-
panies be liable for any damages, direct, indirect, incidental, special or
consequential, resulting from any claim arising out of the information
presented herein, even if it has been advised of the possibility of such
damages. Some states do not allow the exclusion or limitation of such
implied warranties, so the above limitations may not apply.

(© Copyright 1992-2002 Amiga, Inc. All Rights Reserved

Amiga is a registered trademark of Amiga, Inc. Ethernet is a trademark
of Xerox Corporation. ARCNET is a trademark of Datapoint Corporation.
DECNet is a trademark of Digital Equipment Corporation. AppleTalk is a
trademark of Apple Computer, Inc.

Contents

8

9

10

11

12

13

SANA-II Network Device Driver Specification
Driver Form
Opening a SANA-II Device

Buffer Management
4.1 Packet filtering oo
4.2 Enhancements for better buffer management

Multicasting extensions

Packet Type
6.1 FEthernet Packet Types
6.2 ARCNET Frames

Addressing
Hardware Type
Errors

Standard Commands

10.1 Broadcast and Multicast
10.2 Stats e
10.3 Configuration
10.4 On-line

Driver Installation
Acknowledgments
Unresolved Issues

SANA-II network device driver Autodocs

A1 sana2.device/AbortIOo Lo
A2 sana2.device/CloseDevice
A3 sana2.device/CMD_.CLEAR
A4 sana2.device/CMD_FLUSH
A5 sana2.device/CMD_INVALID
A.6 sana2.device/CMD_READ
A.7 sana2.device/CMD_RESET
A.8 sana2.device/CMD_START
A9 sana2.device/CMD_.STOP

11

12
12
12

13

14

14

16
16
17
20
21

23

23

23

m=3 O Q

A.10 sana2.device/CMD_UPDATE 34

A.11 sana2.device/CMD_WRITE 35
A.12 sana2.device/OpenDevice 36
A .13 sana2.device/S2_.ADDMULTICASTADDRESS 37
A.14 sana2.device/S2_.ADDMULTICASTADDRESSES 38
A.15 sana2.device/S2.BROADCAST 39
A .16 sana2.device/S2_.CONFIGINTERFACE 40
A.17 sana2.device/S2_DELMULTICASTADDRESS 41
A .18 sana2.device/S2_DELMULTICASTADDRESSES 42
A.19 sana2.device/S2_.DEVICEQUERY 43
A .20 sana2.device/S2_.GETGLOBALSTATS 44
A .21 sana2.device/S2_GETSPECIALSTATS 45
A .22 sana2.device/S2_.GETSTATIONADDRESS 46
A.23 sana2.device/S2_.GETTYPESTATS 47
A .24 sana2.device/S2_MULTICAST 48
A.25 sana2.device/S2_.OFFLINE 49
A.26 sana2.device/S2.ONEVENT 50
A.27 sana2.device/S2_.ONLINE 51
A.28 sana2.device/S2.READORPHAN 52
A.29 sana2.device/S2_.TRACKTYPE 53
A.30 sana2.device/S2_.UNTRACKTYPE 54
Callback mechanism Autodocs 55
B.1 CopyFromBuff 55
B.2 CopyToBuff 56
B.3 PacketFiltero oo o7
Ethernet description 58
ARCNET description 59
“sana.h” header file 60
“sana2specialstats.h” header file 65

1 SANA-II Network Device Driver Specification

The “SANA-II Network Device Driver Specification” is a standard for an
Amiga software interface between networking hardware and network pro-
tocol stacks (or for software tools such as network monitors). A network
protocol stack is a layer of software that network applications use to ad-
dress particular processes on remote machines and to send data reliably in
spite of hardware errors. There are several common network protocol stacks
including TCP/IP, OSI, AppleTalk, DECNet and Novell.

SANA-II device drivers are intended to allow multiple network protocol
stacks running on the same machine to share one network device. For ex-
ample, the TCP/IP and AppleTalk protocol stacks could both run on the
same machine over one ethernet board. The device drivers are also intended
to allow network protocol stacks to be written in a hardware-independent
fashion so that a different version of each protocol stack doesn’t have to be
written for each networking hardware device.

The standard does not address the writing of network applications. Ap-
plication writers must not use SANA-II Device Drivers directly. Network
applications must use the API provided by the network protocol software
the application supports. There is not an Amiga standard network APT at
the time of this writing, though there is the 45225 TCP/IP package and
its socket.library as well as other (third-party) packages.

To write a SANA-II device driver, you will need to be familiar with the
specification documents for the hardware you are writing to and with the
“SANA-II Network Device Driver Specification”.

To write a network protocol stack which will use SANA-II device drivers,
you should have general familiarity with common network hardware and
must be very familiar with the “SANA-II Network Device Driver Specifica-
tion” as well as the specification for the protocol you are developing. If you
are creating a new protocol, you must obtain a protocol type number for
any hardware on which your protocol will be used.

Amiga supports the SANA-II specification by providing drivers for the
Amiga network hardware. We have an a2065.device (Ethernet) and intend
to produce an a2060.device (ARCNET). We also try to examine review
copies of third-party SANA-II networking hardware and software to try to
make sure that they interoperate with our products.

This standard has undergone several drafts with long periods for com-
ment from developers and the Amiga community at large. These drafts
include a UseNet release which was also distributed on the Fish Disks in
June, 1991 (as well as published in the '91 DevCon notes), and the Novem-
ber 7 Draft for Final Comment and Approval distributed via Bix, ADSP
and UseNet. There were also several intermediate drafts with more limited
distribution.

This version of the specification is final. Any new version of the standard

(i.e., to add new features) is planned to be backward compatible. No SANA-
II device driver or software utilizing those drivers should be written to any
earlier version of the specification.

Distribution of this version of the standard is unlimited. Anyone may
write Amiga software which implements a SANA-II network device driver
or which calls a SANA-II network device driver without restriction and may
freely distribute such software that they have written.

It is important to try to test each SANA-II device driver against all soft-
ware which uses SANA-II devices. Available example programs are valuable
in initial testing. The Amiga Networking Group is interested in receiv-
ing evaluation and/or beta test copies of all Amiga networking hardware,
SANA-IT device drivers and software which uses SANA-II devices. How-
ever, we make no assurances regarding any testing which we may or may
not perform with such evaluation copies.

2 Driver Form

SANA-IT device drivers are Amiga Exec device drivers. They use an ex-
tended IORequest structure and a number of extended commands for tally-
ing network statistics, sending broadcasts and multicasts, network address-
ing and the handling of unexpected packets. The Amiga ROM Kernel Ref-
erence Manual: Devices includes information on how to construct an Exec
device.

3 Opening a SANA-II Device

As when opening any other Exec device, on the call to OpenDevice() a
SANA-II device receives an I0Request structure which the device initializes
for the opener’s use. The opener must copy this structure if it desires to
use multiple asynchronous requests. The SANA-II I0Request is defined as
follows:

struct IOSana2Req

{

struct IORequest ios2_Req;

ULONG ios2_WireError;

ULONG ios2_PacketType;

UBYTE ios2_SrcAddr [SANA2 MAX_ADDR_BYTES] ;
UBYTE ios2 DstAddr [SANA2 MAX_ADDR_BYTES] ;
ULONG ios2 DatalLength;

APTR ios2 Data;

APTR ios2_StatData;

APTR ios2 BufferManagement;

s
ios2 Req A standard Exec device I0Request.

ios2_WireError A more specific device code which may be set when there
is an io_Error. See <devices/sana2.h> on page 60 for the defined
WireErrors.

ios2_PacketType The type of packet requested. See the section on “Packet
Types” on page 12.

ios2_SrcAddr The device fills in this field with the interface (network hard-
ware) address of the source of the packet that satisfied a read com-
mand. The bytes used to hold the address will be left justified but the
bit layout is dependent on the particular type of network.

ios2_Dst Addr Before the device user sends a packet, it fills this with the
interface destination address of the packet. On receives, the device
fills this with the interface destination address. Other commands
may use this field differently (see the “SANA-II network device driver
Autodocs” on page 25). The bytes used to hold the address will be
left justified but the bit layout is dependent on the particular type of
network.

ios2_DataLength The device user initializes this field with the amount of
data available in the Data buffer before passing the I0Sana2Req to the
device. The device fills in this field with the size of the packet data as
it was sent on the wire. This does not include the header and trailer
information. Depending on the network type and protocol type, the
driver may have to calculate this value. This is generally used only for
reads and writes (including broadcast and multicast).

ios2_ Data A pointer to some abstract data structure containing packet
data. Drivers may not directly manipulate or examine anything pointed
to by Data! This is generally used only for reads and writes (including
broadcast and multicast).

ios2_StatData Pointer to a structure in which to place a snapshot of device
statistics. The data area must be long word aligned. This is only used
on calls to the statistics commands.

ios2_BufferManagement The opener places a pointer to a tag list in this
field before calling OpenDevice (). Functions pointed to in the tag list
are called by the device when processing I0Requests from the opener.
When returned from OpenDevice(), this field contains a pointer to
driver-private information used to access these functions. See “Buffer
Management” below for more details.

Note to implementors: A SANA-II device must reject all open requests
with a request structure that is too short, e.g. an I0StdReq. A simple check
of the mn_Length field in the Message part of the request is needed to make
sure that a device does not dereference invalid data due to a wrong device
configuration.

A SANA-II device may open if no buffer management tags are provided
to make the configuration process and obtaining statistics easier. Buffer
management tags with a NULL value must be treated as not specified. The
device shall fail requests gracefully depending on the missing tags in this
case. Any malfunction is not acceptable.

The flags used with the device on OpenDevice () are (SANA20PB xxx):

SANA20PB_MINE Exclusive access to the unit requested.

SANA20PB_PROM Promiscuous mode requested. Hardware which sup-
ports promiscuous mode allows all packets sent over the wire to be
captured whether or not they are addressed to this node.

Note: Promiscuous mode requires exclusive opening of the device.
The flags used during I/O requests are (SANA2I0B xxx):

SANA2IOB_RAW Raw packet read /write requested. Raw packets should
include the entire data-link layer packet. Devices with the same hard-
ware device number should have the same raw packet format.

SANA2IOB_BCAST Broadcast packet (received).
SANA2IOB_MCAST Multicast packet (received).
SANA2IOB_QUICK Quick IO requested.

4 Buffer Management

Unlike most other Exec Device drivers, SANA-II drivers have no internal
buffers. Instead, they read/write to/from an abstract data structure allo-
cated by the driver user. The driver accesses these buffers only via functions
that the driver user provides to the driver. The driver user must provide
two functions—one copies data to the abstract data structure and one copies
data from the abstract data structure. The driver user can therefore choose
the data structure used for buffer management by both the driver and driver
user in order to have efficient memory and CPU usage overall.

The I0Sana2Req contains a pointer to data and the length of said data.
A driver is not allowed to make assumptions about how the data is stored.
The driver cannot directly manipulate or examine the buffer in any manner.

The driver can only access the buffer by calling the functions provided by
the driver user.

Before calling OpenDevice(), the driver user initializes
ios2 BufferManagement to point to a list of tags (defined in
<devices/sana2.h>) which include pointers to the buffer management func-
tions required by the driver (defined below). The driver will fail to open if
the driver user does not supply all of the required functions. If the de-
vice opens successfully, the driver sets ios2 BufferManagement to a value
which this opener must use in all future calls to the driver. This “magic
cookie” is used from then on to access these functions (a “magic cookie”
is a value which one software entity passes to another but which is only
meaningful to one of the software entities). The driver user may not use
the “magic cookie” in any way—it is for the driver to do with as it wishes.
The driver could in theory choose to just copy the tag list to driver-owned
memory and then parse the list for every I0Request, but it is much more
efficient for the driver to create some sort of table of functions and to point
ios2 BufferManagement to that table.

Another recommendation for the “magic cookie® is to use it to maintain
a seperate packet read queue for each device opener. This would allow
multiple protocol stacks that all wish to receive the same packet type to
work together without having to “know” about each other as Enwvoy and
AS225 do right now. What does multiple protocol stack support mean?
Basically this means that each opener gets all the packets necessary. If a
packet comes in that fills a request for more than one opener of the device,
all of them will get a copy of the packet. This feature should never be left
out of a device design. If it is missing, the usefulness of the device is severely
limited.

The SLIP and A2065 driver now do this, so it would be possible (for
example) to run Envoy, AS225 and the AmiTCP package together on the
same hardware without conflicts.

In order to help system load, a new callback has been added to allow
protocol stacks to reject packets that are known to not be useful. Envoy’s
nipc.library (for example) could be modified to reject TCP packets (as it
never uses them).

The specification currently defines three tags for the OpenDevice()
ios2 BufferManagement tag list:

S2_CopyToBuff This is a pointer to a function which conforms to the
CopyToBuff Autodoc (see page 56).

S2_CopyFromBuff This is a pointer to a function which conforms to the
CopyFromBuff Autodoc (see page 55).

S2_PacketFilter [optional] This is a pointer to a standard Hook to be
called before S2_CopyToBuff is done. See the PacketFilter Autodoc

on page 57 for more information.

4.1 Packet filtering

What does packet filtering do? With the original “SANA-II Network De-
vice Driver Specification”, a protocol stack could open a device and ask for
certain packet types. It got all the packets that matched this type. As it
turned out, this could be mighty inefficient if there were packets that the
protocol stack did not use at all. These would go into read processing of
the protocol stack and waste CPU time even though they could have been
easily identified on arrival.

4.2 Enhancements for better buffer management

It has been observed that the standard buffer management callbacks may
not be very efficient for certain types of hardware. They also do not al-
low driver DMA access. Therefore the original “SANA-II Network Device
Driver Specification” has been enhanced to allow for more flexible buffer
management. This enhancement is fully backwards compatible.

All the new features are completely optional and do not collide with
existing features. They may be used only when the protocol stack asks for
them on opening a driver.

The enhancements consist of several new tags that may be specified by
a protocol stack on OpenDevice() to offer certain data transfer options. It
is up to the device driver to choose which callbacks to use at what time.
These tags are advisory only and may be ignored by the driver for any data
buffer at any time:

#define S2 _CopyToBuff16 (S2_Dummy + 4)
#define S2_CopyFromBuff16 (S2_Dummy + 5)
#define S2 _CopyToBuff32 (S2_Dummy + 6)
#define S2_CopyFromBuff32 (S2_Dummy + 7)

These are optional callbacks presented to the device with the same calling
interface as for S2_CopyToBuff or S2_CopyFromBuff, respectively. The dif-
ference to the original callbacks is the required and guaranteed transfer size
and alignment for accessing the device’s buffer for a single piece of a data
of either 16 or 32 bits, a data word. The copy function called may only use
16/32 bit aligned read/write commands of 16/32 bits at once to transfer the
data words, respectively. If the buffer data length is not a multiple of the
required data word transfer size, the last data word transfer may contain
garbage padding in either transfer direction.

The following tags have been added to support direct writes into hardware
buffers that do not allow arbitrarily sized or aligned accesses:

10

#define S2 DMACopyToBuff32 (S2_Dummy + 8)
#define S2 DMACopyFromBuff32 (S2 Dummy + 9)

If the protocol stack wants to optionally enhance data transfer efficiency
with DMA supporting devices, it may pass any of these optional tags to the
device on OpenDevice().

If the device driver supports DMA, it may call the respective callback
with the abstract magic cookie ios2 Data in register AQ. The callback may
return NULL in DO. In this case, the driver may not use DMA for this
buffer. Alternatively, the callback may return the address of the actual data
buffer in DO, if it has these characteristics:

e The buffer is in contigous memory. Depending on the intended data
direction, it shall be readable or writable.

e The buffer is aligned on a 32 bit boundary.

e The buffer size shall be a multiple of 32 bit and it is at least >
ios2 Datalength.

It is up to the driver to decide if it can use DMA for this buffer and
it shall fall back to the standard CPU callbacks if necessary. The data
transfer method actually used by the driver will not be known in advance
by the protocol stack.

5 Multicasting extensions

SANA-II Rev 3 unfortunately only has a command that allows an applica-
tion to specify a single multicast address. An application may issue multiple
such commands, effectively accepting packets for more than one multicast
address.

However because of memory and CPU time constraints this method can-
not be used reasonably if an application needs to listen to a large range of
multicast addresses (e.g. several thousand addresses or more), as is for in-
stance the case with mrouted-like programs which need to forward all IP
multicasting traffic between networks. This involves a multicast address
range of 223 addresses.

This section defines two additional commands which allow an applica-
tion to listen to a whole, possibly very large, range of multicast addresses,
overcoming the above-mentioned limitation in SANA-II Rev 3.

In addition to the existing commands S2_ADDMULTICASTADDRESS and
S2_DELMULTICASTADDRESS two new commands S2_ADDMULTICASTADDRESSES
and S2 DELMULTICASTADDRESSES are introduced. These commands enable
and disable the reception of packets within a given address range.

11

6 Packet Type

Network frames always have a type field associated with them. These type
fields vary in length, position and meaning by frame type (frame types gen-
erally correspond one-to-one with hardware types, but see “Ethernet Packet
Types” below). The meanings of the type numbers are always carefully de-
fined and every type number is registered with some official body. Do not
use a type number which is not registered for any standard hardware you
use or in a manner inconsistent with that registration.

The type field allows the SANA-II device driver to fulfill CMD_READs based
on the type of packet the driver user wants. Multiple protocols can therefore
run over the same wire using the same driver without stepping on each
other’s toes.

Packet types are specified as a long word. Unfortunately, the type field
means different things on different wires. Driver users must allow their
software to be configured with a SANA-II device name, unit number and
the type number(s) used by the protocol stack with each device. This way,
if new hardware becomes available, a hardware manufacturer can supply a
listing of type assignments to configure pre-existing software.

6.1 Ethernet Packet Types

Ethernet has a special problem with packet types. Two types of ethernet
frames can be sent over the same wire-ethernet and 802.3. These frames
differ in that the Type field of an ethernet frame is the Length field of an
802.3 frame. This creates a problem in that demultiplexing incoming packets
can be cumbersome and inefficient, as well as requiring driver users to be
aware of the frame type used.

All 802.3 frames have numbers less than 1500 in the Type field. The
only frames with numbers less than 1500 in the type field are 802.3 frames.
SANA-IT ethernet drivers abnormally return packets contained in ethernet
frames when the requested Type falls within the 802.3 range-if the Type
requested is within the 802.3 range, the driver returns the next packet con-
tained within an 802.3 frame, regardless of the type specified for the packet
within the 802.3 frame. This requires that there be no more than one driver
user requesting 802.3 packets and that it do its own interpretation of the
frames.

6.2 ARCNET Frames

ARCNET also has a special problem with framing. ARCNET frames consist

of a hardware header and a software header. The software header is in the

data area of the hardware packet, and includes at least the protocol ID.
There are two types of software header. Old-style ARCNET software

12

headers consist entirely of a one or two byte protocol ID. New ARCNET
software headers (defined in RFC 1201 and in the paper “ARCNET Packet
Header Definition Standard”, Novell, Inc., 1989) include more information.
They allow more efficient use of ARCNET through data link layer fragmen-
tation and reassembly (ARCNET has a small Maximum Transmission Unit)
and allow sending any size packet up to the MTU (rather than requiring that
packets of size 253, 254 and 255 be padded to at least 256 bytes).

SANA-II device drivers for ARCNET should implement the old ARC-
NET packet headers. Driver users which wish to interoperate with platforms
using the new software headers must add the new fields to the data to be
sent and must process it for incoming data. A SANA-II driver which im-
plemented the data link layer fragmentation internally (and advertised a
large MTU) could be more efficient than requiring the driver user to do it.
This would make driver writing more difficult and reduce interoperability,
but if there is ever a demand for that extra performance, a new hardware
type may be assigned by Amiga for SANA-IT ARCNET device drivers which
implement the new framing.

7 Addressing

In the SANA-II standard, network hardware addresses are stored in an array
of n bytes. No meaning is ascribed by the standard to the contents of the
array.

In case there exists a network which does not have an address field
consisting of a number of bits not divisible by eight, add pad bits at the
end of the bit stream. For example, if an address is ten bits long it will be
stored like this:

98765432 10PPPPPP
BYTE O BYTE 1

Where the numerals are bit numbers and 'P’ is a pad (ignored) bit.

Driver users which do not implement the bit shifting necessary to use
a network with such addressing (if one exists) should at least check the
number of significant bits in the address field (returned from the device’s
S2_DEVICEQUERY function) to make sure that it is evenly divisible by eight.

Driver users will map hardware addresses to protocol addresses in a pro-
tocol and hardware dependent manner, as described by the relevant stan-
dards (i.e., RFC 826 for TCP/IP over Ethernet, RFC 1201 or RFC 1051 for
TCP/IP over ARCNET). Some protocols will always use the same mapping
on all hardware, but other protocols will have particular address mapping
schemes for some particular hardware and a reasonable default for other
(unknown) hardware.

13

Some SANA-IT devices will have “hardware addresses” which aren’t re-
ally hardware addresses. As an example, consider PPP (Point-to-Point
Protocol). PPP is a standard for transmitting IP packets over a serial
line. It uses IP addresses negotiated during the establishment of a connec-
tion. In a SANA-IT driver implementation of PPP, the driver would nego-
tiate the address at S2_CONFIGINTERFACE. Thus, the address in SrcAddr
returned by the device on an S2_CONFIGINTERFACE (or in a subsequent
S2_GETSTATIONADDRESS) will be a protocol address, not a true hardware
address.

Note: Some hardware always uses a ROM hardware address. Other
hardware which has a ROM address or is configurable with DIP switches
may be overridden by software. Some hardware always dynamically allocates
a new hardware address at initialization. See “Configuration” on page 20 for
details on how this is handled by driver writers and by driver users.

8 Hardware Type

The HardwareType returned by the device’s S2 DEVICEQUERY function is
necessary for those protocols whose standards require different behavior on
different hardware. It is also useful for determining appropriate packet type
numbers to use with the device. The HardwareType values already issued
for standard network hardware are the same as those in RFC 1060 (assigned
numbers). Hardware developers implementing networks without a SANA-IT
hardware number must contact Amiga to have a new hardware type number
assigned. Driver users should all have reasonable defaults which can be used
for hardware with which they are not familiar.

9 Errors

The SANA-IT extended IORequest structure (struct I0Sana2Req) includes
both the ios2 Error and ios2 WireError fields. Driver users must al-
ways check I0Sana2Regs on return for an error in ios2 Error. ios2 Error
will be zero if no error occurred, otherwise it will contain a value from
<exec/errors.h> or <devices/sana2.h>. If there was an error, there may
be more specific information in ios2 WireError. Drivers are required to fill
in the WireError if there is an applicable error code.

Error codes are #define’d in the “defined errors” sections of the file
<devices/sana2.h>:

I0Sana2Req S2io_Error field (S2ERR_xxx):

S2ZERR_NO_RESOURCES Insufficient resources available.
S2ERR_BAD_ARGUMENT Noticeably bad argument.

14

S2ERR_BAD_STATE Command inappropriate for current state.
S2ERR_BAD_ADDRESS Noticeably bad address.
S2ERR MTU_EXCEEDED Write data too large.

S2ERR_NOT_SUPPORTED Command is not supported by this driver.
This is similar to IOERR_NOCMD as defined in <exec/errors.h> but
S2ERR_NOT_SUPPORTED indicates that the requested command is a valid
SANA-IT command and that the driver does not support it because
the hardware is incapable of supporting it (e.g., S2_ MULTICAST). Note
that TOERR_NOCMD is still valid for reasons other than a lack of hardware
support (i.e., commands which are no-ops in a SANA-II driver).

S2ERR_SOFTWARE Software error of some kind.

S2ERR_OUTOFSERVICE When a hardware device is taken off-line,
any pending requests are returned with this error.

See also the standard errors in <exec/errors.h>.

I0Sana2Req S2io WireError field (S2WERR xxx):

S2ZWERR NOT _CONFIGURED Command requires unit to be config-
ured.

S2WERR_UNIT_ONLINE Command requires that the unit be off-line.
S2ZWERR_UNIT_OFFLINE Command requires that the unit be on-line.
S2ZWERR_ALREADY _TRACKED Protocol is already being tracked.
S2ZWERR _NOT_TRACKED Protocol is not being tracked.

S2ZWERR_BUFF_ERROR Buffer management function returned an er-

ror.
S2ZWERR_SRC_ADDRESS Problem with the source address field.
S2WERR_DST_ADDRESS Problem with destination address field.
S2WERR_BAD_BROADCAST Problem with an attempt to broadcast.
S2WERR_BAD_MULTICAST Problem with an attempt to multicast.
S2ZWERR _MULTICAST _FULL Multicast address list full.

S2ZWERR _BAD_EVENT Event specified is unknown.

S2ZWERR _BAD_STATDATA The ios2_StatData pointer or the data it

points to failed a sanity check.

15

S2WERR _IS_CONFIGURED Attempt to reconfigure the unit.

S2ZWERR_NULL_POINTER A NULL pointer was detected in one of
the arguments. S2ERR_BAD_ARGUMENT should always be the S2ERR.

10 Standard Commands

See the “SANA-II network device driver Autodocs” on page 25 for full de-
tails on each of the SANA-II device commands. Extended commands are
explained in the sections below.

Many of the Exec device standard commands are no-ops in SANA-II
devices, but this may not always be the case. For example, CMD_RESET
might someday be used for dynamically reconfiguring hardware. This should
present no compatibility problems for properly written drivers.

10.1 Broadcast and Multicast

S2_ADDMULTICASTADDRESS S2_MULTICAST
S2_DELMULTICASTADDRESS S2_BROADCAST

Some hardware supports broadcast and/or multicast. A broadcast is a
packet sent to all other machines. A multicast is a packet sent to a set
of machines. Drivers for hardware which does not allow broadcast or multi-
cast will return ios2_Error S2ERR_NOT_SUPPORTED as appropriate.

To send a broadcast, use S2_BROADCAST instead of CMD_WRITE. Broadcasts
are received just like any other packets (using a CMD_READ for the appropriate
packet type).

To send a multicast, use S2_MULTICAST instead of CMD_WRITE. The de-
vice keeps a list of addresses that want to receive multicasts. You add a
receiver’s address to this list by using S2_ADDMULTICASTADDRESS. The re-
ceiver then posts a CMD_READ for the type of packet to be received. Some
SANA-II devices which support multicast may have a limit on the number
of addresses that can simultaneously wait for packets. Always check for an
S2WERR_MULTICAST FULL error return when adding a multicast address.

Note that when the device adds a multicast address, it is usually added
for all users of the device, not just the driver user which called
S2_ADDMULTICASTADDRESS. In other words, received multicast packets will
fill a read request of the appropriate type regardless of whether the request-
ing driver user is the same one which added the multicast address.

In general, driver users should not care how received packets were sent
(normally or broadcast/multicast), only that it was received. If a driver
user really must know, however, it can check for SANA2I0B_BCAST and/or
SANA2I0B MCAST in the ios2 Flags field.

Drivers should keep a count for the number of opens on a multicast
address so that they don’t actually remove it until it has been remove with

16

the S2_DELMULTICASTADDRESS command as many times as it has been added
with the S2_ADDMULTICASTADDRESS command.

10.2 Stats

S2_TRACKTYPE S2_GETTYPESTATS S2_GETGLOBALSTATS
S2_UNTRACKTYPE S2_GETSPECTALSTATS S2_READORPHAN

There are many statistics which may be very important to someone trying to
debug, tune or optimize a protocol stack, as well as to the end user who may
need to tune parameters or investigate a problem. Some of these statistics
can only be kept by the SANA-II driver, thus there are several required and
optional statistics and commands for this purpose.

S2_TRACKTYPE tells the device driver to gather statistics for a particu-
lar packet type. S2_UNTRACKTYPE tells it to stop (keeping statistics by type
causes the driver to use additional resources). S2_GETTYPESTATS returns
any statistics accumulated by the driver for a type being tracked (stats
are lost when a type is S2_UNTRACKTYPE’d). Drivers are required to im-
plement the functionality of type tracking. The stats are returned in a
struct Sana2PacketTypeStats:

struct Sana2?PacketTypeStats
{
ULONG PacketsSent;
ULONG PacketsReceived;
ULONG BytesSent;
ULONG BytesReceived;
ULONG PacketsDropped;

}s
PacketsSent Number of packets of a particular type sent.

PacketsReceived Number of packets of a particular type that satisfied a
read command.

BytesSent Number of bytes of data sent in packets of a particular type.

BytesReceived Number of bytes of data of a particular packet type that
satisfied a read command.

PacketsDropped Number of packets of a particular type that were re-
ceived while there were no pending reads of that packet type.

S2_GETGLOBALSTATS returns global statistics kept by the driver. Drivers are
required to keep all applicable statistics. Since all are applicable to most
hardware, most drivers will maintain all statistics. The stats are returned
in a struct Sana2DeviceStats:

17

struct Sana2DeviceStats

{

ULONG PacketsReceived;
ULONG PacketsSent;

ULONG BadData;

ULONG Overruns;

ULONG UnknownTypesReceived;
ULONG Reconfigurations;

struct timeval LastStart;

s
PacketsReceived Number of packets that this unit has received.
PacketsSent Number of packets that this unit has sent.
BadData Number of bad packets received (i.e., hardware CRC failed).

Overruns Number of packets dropped due to insufficient resources avail-
able in the network interface.

UnknownTypeReceived Number of packets received that had no pend-
ing read command with the appropriate packet type.

Reconfigurations Number of network reconfigurations since this unit was
last configured.

LastStart The time when this unit last went on-line.

S2_GETSPECIALSTATS returns any special statistics kept by a particular driver.
Each new wire type will have a set of documented, required statistics for
that wire type and a standard set of optional statistics for that wire type
(optional because they might not be available from all hardware). The data
returned by S2_GETSPECIALSTATS will require wire-specific interpretation.
See <devices/sana2specialstats.h> on page 65 for currently defined spe-
cial statistics. The statistics are returned in the following structures:

struct Sana2SpecialStatRecord

{

ULONG Type;
ULONG Count;
char *String;

s
Type Statistic identifier.

Count Statistic itself.

18

String An identifying, null-terminated string for the statistic. Should be
plain ASCII with no formatting characters.

struct Sana2SpecialStatHeader

{

ULONG RecordCountMax;
ULONG RecordCountSupplied;
struct Sana2SpecialStatRecord[RecordCountMax] ;

s

RecordCountMax There is space for this many records into which statis-
tics may be placed.

RecordCountSupplied Number of statistic records supplied.

S2_READORPHAN is not, strictly speaking, a statistical function. It is a request
to read any packet of a type for which there is no outstanding CMD_READ.
S2_READORPHAN might be used in the same manner as many statistics, though,
such as to determine what packet types are causing overruns, etc.

19

10.3 Configuration

S2_DEVICEQUERY S2_CONFIGINTERFACE S2_GETSTATIONADDRESS

The device driver needs to configure the hardware before using it. The driver
user must know some network hardware parameters (hardware address and
MTU, for example) when using it. These commands address those needs.

When a driver user is initialized, it should try to S2_CONFIGINTERFACE
even though an interface can only be configured once and someone else may
have done it. Before you call S2_CONFIGINTERFACE, first call
S2_GETSTATIONADDRESS to determine the factory address (if any). Also pro-
vide for user-override of the factory address (that address may be optional
and the user may need to override it). When S2_CONFIGINTERFACE returns,
check the ios2_SrcAddr for the actual address the hardware has been con-
figured with. This is because some hardware (or serial line standards such
as PPP) always dynamically allocates an address at initialization.

Driver users will want to use S2_DEVICEQUERY to determine the MTU and
other characteristics of the network. The structure returned
from S2_DEVICEQUERY is defined as:

struct Sana2DeviceQuery
{
ULONG SizeAvailable;
ULONG SizeSupplied;
ULONG DevQueryFormat;
ULONG Devicelevel;
ULONG AddrFieldSize;
ULONG MTU;
ULONG BPS;
ULONG HardwareType;

s

SizeAvailable Size, in bytes, of the space available in which to place device
information. This includes both size fields.

SizeSupplied Size, in bytes, of the data supplied.

DevQueryFormat The format defined here is format 0.

DeviceLevel This spec defines level 0.

AddrFieldSize The number of bits in an interface address.

MTU Maximum Transmission Unit, the size, in bytes, of the maximum
packet size, not including header and trailer information.

20

BPS Best guess at the raw line rate for this network in bits per second.

HardwareType Specifies the type of network hardware the driver controls.

10.4 On-line
S2_0ONLINE S2_0ONEVENT S2_0FFLINE

In order to run hardware tests on an otherwise live system, the S2_0FFLINE
command allows the SANA-IT device driver to be “turned off” until the
tests are complete and an S2_0ONLINE is sent to the driver. S2_ONLINE causes
the interface to re-configure and re-initialize. Any packets destined for the
hardware while the device is off-line will be lost. All pending and new
requests to the driver shall be returned with S2ERR_OUTOFSERVICE when a
device is off-line.

All driver users must understand that any I/O request may return with
S2ERR_OUTOFSERVICE because the driver is off-line (any other program may
call S2_0FFLINE to make it so). In such an event, the driver will usually
want to wait until the unit comes back on-line (for the program which called
S2_0FFLINE to call $2_ONLINE). It may do this by calling S2_ONEVENT to wait
for S2EVENT_ONLINE. S2_ONEVENT allows the driver user to wait on various
events.

A driver must track events, but may not distinguish between some
types of events. Drivers return S2_ONEVENT with S2ERR_NOT_SUPPORTED and
S2WERR_BAD_EVENT for unsupported events. One error may cause more than
one event (see below). Errors which seem to have been caused by a mal-
formed or unusual request should not generally trigger an event.

Event types (S2EVENT xxx):

S2EVENT_ERROR Return when any error occurs.
S2EVENT_TX Return on any transmit error (always an error).
S2ZEVENT_RX Return on any receive error (always an error).

S2ZEVENT_ONLINE Return when unit goes on-line or return immedi-
ately if unit is already on-line (not an error).

S2EVENT _OFFLINE Return when unit goes off-line or return immedi-
ately if unit is already off-line (not an error.)

S2EVENT_BUFF Return on any buffer management function error (al-
ways an error).

S2EVENT_HARDWARE Return when any hardware error occurs (al-
ways an error, may be a S2EVENT_TX or S2EVENT RX, too0).

21

S2EVENT_SOFTWARE Return when any software error occurs (always
an error, may be a S2EVENT_TX or S2EVENT RX, t00).

22

11 Driver Installation

The standard system location for SANA-IT network device driver is in a
directory called "Networks" which exists in the "DEVS:" directory.
Example:

DEVS:Networks/a2065.device

This is the official location for the drivers. It may be necessary for your
install program/script to create this directory if it doesn’t exist in a user’s
System.

12 Acknowledgments

Many people and companies have contributed to the “SANA-II Network
Device Driver Specification”. The original SANA-IT Autodocs and includes
were put together by Ray Brand, Perry Kivolowitz (ASDG) and Martin
Hunt. Those original documents evolved to their current state and grew
to include this document at the hands of Dale Larson and Greg Miller.
Brian Jackson and John Orr provided valuable editing. Randell Jesup has
provided sage advice on several occasions. The buffer management callback
mechanism was his idea. Dale Luck (GfxBase) and Rick Spanbauer (Ameris-
tar Technologies) have provided valuable comments throughout the process.
Nicolas Benezan (ADONIS) provided many detailed and useful comments
on weaknesses in late drafts of the specification. The enhancements for
better buffer management, clarifications and notes for device implementors
were added to the specification by Heinz Wrobel whilst consulting for Amiga
Technologies GmbH, yielding revision 3.0 of the specification.

Thanks to all the above and the numerous others who have contributed with
their comments, questions and discussions.

13 Unresolved Issues

Unfortunately, it isn’t possible to completely isolate network protocols from
the hardware they run on. Hardware types and addressing both remain
somewhat hardware-dependent in spite of our efforts. See the “Packet Type”
section on page 12 for an explanation of how packet types are handled and
why protocols cannot be isolated from them. See the “Addressing” section
on page 13 for an explanation of how addressing is handled any why protocols
cannot be isolated from it.

Additionally, there are at least two cases where a hardware type has
multiple framing methods in use (ethernet/802.3 and arcnet/(Novell) “AR-
CNET Packet Header Definition Standard”). In both cases, software which

23

must interoperate with other platforms on this hardware may need to be
aware of the distinctions and may have to do extra processing in order to
use the appropriate frame type. See the sections on “Ethernet Packet Types”
on page 12 and on “ARCNET frames” on page 12 for more details.

Another feature that SANA-IT currently lacks is any concept of dynamic
addressing. Some hardware types such as LocalTalk or dialup SLIP/PPP
connections may change their address on the fly. Currently there is no way
for a device driver to report this event back to a protocol stack.

24

A SANA-II network device driver Autodocs
A.1 sana2.device/AbortIO

sana2.device/AbortI0 sana2.device/AbortI0

NAME
AbortI0 -- Remove an existing device request.

SYNOPSIS

error = AbortI0(Sana2Req)
DO Al

LONG AbortIO(struct IOSana2Req *);

FUNCTION
This is an exec.library call.

This function aborts an ioRequest. If the request is active, it may or
may not be aborted. If the request is queued it is removed. The
request will be returned in the same way as if it had normally
completed. You must WaitIO() after AbortIO() for the request to

return.
INPUTS
Sana2Req - Sana2Req to be aborted.
RESULTS
error - Zero if the request was aborted, non-zero otherwise.
io_Error in Sana2Req will be set to IOERR_ABORTED
if it was aborted.
SEE ALSO

exec.library/AbortI0(), exec.library/WaitIO()

25

A.2 sana2.device/CloseDevice

sana2.device/CloseDevice sana2.device/CloseDevice

NAME
CloseDevice -- Close the device.

SYNOPSIS
CloseDevice(Sana2Req)
Al

void CloseDevice(struct I0Sana2Req *);

FUNCTION
This function is called by exec.library CloseDevice().

This function performs whatever cleanup is required at device closes.
Note that all IORequests MUST be complete before closing. If any are
pending, your program must AbortIO() then WaitIO() each outstanding

IORequest to complete them.

INPUTS
Sana2Req - Pointer to I0Sana2Req initialized by OpenDevice().

SEE ALSO
exec.library/CloseDevice(), exec.library/OpenDevice()

26

A.3 sana2.device/CMD_CLEAR

sana2.device/CMD_CLEAR sana2.device/CMD_CLEAR
NAME
Clear -- Clear internal network interface read buffers.
FUNCTION

There are no device internal buffers, so CMD_CLEAR does not apply to
this class of device.

I0 REQUEST

ios2_Command - CMD_CLEAR.
RESULTS

ios2_Error - IOERR_NOCMD.

27

A.4 sana2.device/CMD_FLUSH

sana2.device/CMD_FLUSH sana?2.device/CMD_FLUSH

NAME
Flush -- Clear all queued I/0 requests for the SANA-II device.

FUNCTION
This command aborts all I/0 requests in both the read and write
request queues of the device. All pending I/0 requests are
returned with an error message (IOERR_ABORTED). CMD_FLUSH does not
affect active requests.

I0 REQUEST
ios2_Command - CMD_FLUSH.
RESULTS
ios2_Error - Zero if successful; non-zero otherwise.

28

A.5 sana2.device/CMD_INVALID

sana?2.device/CMD_INVALID sana2.device/CMD_INVALID

NAME
Invalid -- Return with error IOERR_NOCMD.

FUNCTION
This command causes device driver to reply with an error IOERR_NOCMD
as defined in <exec/errors.h> indicating the command is not supported.

I0 REQUEST

ios2_Command - CMD_INVALID.
RESULTS

ios2_Error - IOERR_NOCMD.
BUGS

Not known to be useful.

29

A.6 sana2.device/CMD_READ

sana?2.device/CMD_READ sana?2.device/CMD_READ
NAME
Read -- Get a packet from the network.
FUNCTION

Get the next packet available of the requested packet type. The data
copied (via a call to the requestor-provided CopyToBuffer function)
into ios2_Data is normally the Data Link Layer packet data only. If
bit SANA2IOB_RAW is set in ios2_Flags, then the entire physical frame
will be returned.

Unlike most Exec devices, SANA-II device drivers do not have internal
buffers. If you wish to read data from a SANA-II device you should
have multiple CMD_READ requests pending at any given time. The
functions provided by you the requestor will be used for any incoming
packets of the type you’ve requested. If no read requests are
outstanding for a type which comes in and no read_orphan requests are
outstanding, the packet will be lost.

I0 REQUEST
ios2_Command - CMD_READ
ios2_Flags - Supported flags are:

SANA2IO0B_RAW
SANA2I0B_QUICK
ios2_PacketType - Packet type desired.

ios2_Data - Abstract data structure to hold packet data.
RESULTS

ios2_Error - Zero if successful; non-zero otherwise.

ios2_WireError - More specific error number.

ios2_Flags - The following flags may be returned:

SANA2IOB_RAW
SANA2I0B_BCAST
SANA2I0B_MCAST

ios2_SrcAddr - Source interface address of packet.
ios2_DstAddr - Destination interface address of packet.
ios2_DataLength - Length of packet data.

ios2_Data - Abstract data structure which packet data is

contained in.

NOTES
The driver may not directly examine or modify anything pointed to by
ios2_Data. It *must* use the requester-provided functions to access
this data.

SEE ALSO
S2_READORPHAN, CMD_WRITE, any_protocol/CopyToBuffer

30

A.7 sana2.device/CMD_RESET

sana2.device/CMD_RESET sana2.device/CMD_RESET
NAME
Reset -- Reset the network interface to initialized state.
FUNCTION

Currently, SANA-II devices can only be configured once (with
CMD_CONFIGINTERFACE) and cannot be re-configured, hence,
CMD_RESET does not apply to this class of device.

I0 REQUEST

ios2_Command - CMD_RESET.
RESULTS

ios2_Error - IOERR_NOCMD.

31

A.8 sana2.device/CMD_START

sana2.device/CMD_START sana2.device/CMD_START
NAME
Start -- Restart device operation.
FUNCTION

There is no way for the driver to keep queuing requests without
servicing them, so CMD_STOP does not apply to this class of device.
S2_OFFLINE and S2_ONLINE do perform a similar function to CMD_STOP
and CMD_START

I0 REQUEST

ios2_Command - CMD_START.
RESULTS

ios2_Error - IOERR_NOCMD.
SEE ALSO

S2_ONLINE, S2_OFFLINE

32

A.9 sana2.device/CMD_STOP

sana?2.device/CMD_STOP sana?2.device/CMD_STOP
NAME
Stop -- Pause device operation.
FUNCTION

There is no way for the driver to keep queuing requests without
servicing them, so CMD_STOP does not apply to this class of device.
S2_OFFLINE and S2_ONLINE do perform a similar function to CMD_STOP
and CMD_START

I0 REQUEST

ios2_Command - CMD_STOP.
RESULTS

ios2_Error - IOERR_NOCMD.
NOTES
SEE ALSO

S2_ONLINE, S2_OFFLINE

33

A.10 sana2.device/CMD_UPDATE

sana2.device/CMD_UPDATE sana2.device/CMD_UPDATE
NAME
Update -- Force packets out to device.
FUNCTION

Since there are no device internal buffers, CMD_UPDATE does not
apply to this class of device.

I0 REQUEST

ios2_Command - CMD_UPDATE.
RESULTS

ios2_Error - IOERR_NOCMD.

34

A.11 sana2.device/CMD_WRITE

sana2.device/CMD_WRITE sana2.device/CMD_WRITE
NAME
Write -- Send packet to the network.
FUNCTION

This command causes the packet to be sent to the specified network
interface. Normally, appropriate packet header and trailer information
will be added to the packet data when it is sent. If bit SANA2IOB_RAW
is set in io_Flags, then the ios2_Data is assumed to contain an entire
physical frame and will be sent (copied to the wire via
CopyFromBuffer () unmodified.

Note that the device should not check to see if the destination
address is on the local hardware. Network protocols should realize
that the packet has a local destination long before it gets to a
SANA-IT driver.

I0 REQUEST
ios2_Command - CMD_WRITE.
ios2_Flags - Supported flags are:

SANA2IOB_RAW
SANA2I0B_QUICK
ios2_PacketType - Packet type to send.

ios2_DstAddr - Destination interface address for this packet.
ios2_Datalength - Length of the Data to be sent.
ios2_Data - Abstract data structure which packet data is

contained in.

RESULTS
ios2_Error - Zero if successful; non-zero otherwise.
ios2_WireError - More specific error number.

NOTES

The driver may not directly examine or modify anything pointed to by
ios2_Data. It *must* use the requester-provided functions to access
this data.

SEE ALSO
CMD_READ, S2_BROADCAST, S2_MULTICAST, any_protocol/CopyFromBuffer

35

A.12 sana2.device/OpenDevice

sana2.device/OpenDevice sana2.device/OpenDevice
NAME
Open -- Request an opening of the network device.
SYNOPSIS
error = OpenDevice(unit, IOSana2Req, flags)
DO DO Al D1

BYTE OpenDevice(ULONG, struct IOSana2Req *, ULONG);

FUNCTION
This function is called by exec.library OpenDevice().

This function performs whatever initialization is required per
device open and initializes the Sana2Req for use by the

device.
INPUTS
unit - Device unit to open.
Sana2Req - Pointer to IOSana2Req structure to be initialized by
the sana2.device.
flags - Supported flags are:

SANA20PB_MINE
SANA20PB_PROM
ios2_BufferManagement - A pointer to a tag list containing
pointers to buffer management functions.

RESULTS
error - same as io_Error
io_Error - Zero if successful; non-zero otherwise.
io_Device - A pointer to whatever device will handle the calls

for this unit. This pointer may be different
depending on what unit is requested.
ios2_BufferManagement - A pointer to device internal information
used to call buffer management functions.

NOTES
A SANA-II device must reject all open requests with a request
structure that is too short, e.g. an IOStdReq. A simple check of the
mn_Length field in the Message part of the request is needed to make
sure that a device does not dereference invalid data due to a wrong
device configuration.

A SANA-II device may open if no buffer management tags are provided to
make the configuration process and obtaining statistics easier. Buffer
management tags with a NULL value must be treated as not specified.
The device shall fail requests gracefully depending on the missing
tags in this case. Any malfunction is not acceptable.

SEE ALSO
exec.library/OpenDevice(), exec.library/CloseDevice()

36

A.13 sana2.device/S2_ADDMULTICASTADDRESS

sana2.device/S2_ADDMULTICASTADDRESS sana2.device/S2_ADDMULTICASTADDRESS
NAME
AddMulticastAddress -- Enable an interface multicast address.
FUNCTION

This command causes the device driver to enable multicast packet
reception for the requested address.

I0 REQUEST
ios2_Command - S2_ADDMULTICASTADDRESS.
ios2_SrcAddr - Multicast address to enable.
RESULTS
ios2_Error - Zero if successful; non-zero otherwise.
ios2_WireError - More specific error number.
NOTES
Multicast addresses are added globally -- anyone using the device

may receive packets as a result of any multicast address which has
been added for the device.

Since multicast addresses are not "bound" to a particular packet type,
each enabled multicast address has an "enabled" count associated with
it so that if two protocols add the same multicast address and later
one removes it, it is still enabled until the second removes it.

SEE ALSO
S2_MULTICAST, S2_DELMULTICASTADDRESS

37

A.14 sana2.device/S2_ADDMULTICASTADDRESSES

sana2.device/S2_ADDMULTICASTADDRESSES sana2.device/S2_ADDMULTICASTADDRESSES
NAME
AddMulticastAddresses -- Enable a range of interface multicast addresses.
FUNCTION

This command causes the device driver to enable multicast packet
reception for the requested address range.

I0 REQUEST
ios2_Command - S2_ADDMULTICASTADDRESSES.
ios2_SrcAddr - Lowest Multicast address to enable.
ios2_DstAddr - Highest Multicast address to enable.
RESULTS
ios2_Error - Zero if successful; non-zero otherwise.
ios2_WireError - More specific error number.
NOTES
Multicast address ranges are added globally -- anyone using the device

may receive packets as a result of any multicast address range which
has been added for the device.

Since multicast address ranges are not "bound" to a particular packet
type, each enabled multicast address range has an "enabled" count
associated with it so that if two protocols add the same multicast
address range and later one removes it, it is still enabled until

the second removes it.

An "address range" consists of all valid Multicast addresses between
the specified addresses, i.e. ios2_SrcAddr <= address <= ios2_DstAddr.
In this context "<=" has the intuitive meaning: it denotes a binary
comparison, where each multicast address is treated as a binary
number in Big Endian byte order.

For some hardware types it is possible that a specified address range
includes some multicast addresses and some unicast or broadcast
addresses. In this case this command only enables the reception of
packets sent to the multicast addresses defined by the address range,
not the reception of packets sent to unicast or broadcast addresses
within the same address range.

This command is primarily designed to allow an application to receive
packets sent to a potentially extremely large number of multicast
addresses, i.e. it is imperative that a device driver does not
implement this command by repeatedly executing S2_ADDMULTICASTADDRESS
for each address in the range.

SEE ALSO
S2_MULTICAST, S2_DELMULTICASTADDRESSES, S2_ADDMULTICASTADDRESS,

38

A.15 sana2.device/S2_.BROADCAST

sana2.device/S2_BROADCAST sana2.device/S2_BROADCAST
NAME
Broadcast -- Broadcast a packet on network.
FUNCTION

This command works the same as CMD_WRITE except that it also performs
whatever special processing of the packet is required to do a
broadcast send. The actual broadcast mechanism is neccessarily
network/interface/device specific.

I0 REQUEST
ios2_Command - S2_BROADCAST.
ios2_Flags - Supported flags are:

SANA2I0B_RAW
SANA2I0B_QUICK
ios2_PacketType - Packet type to send.
ios2_DataLength - Length of the Data to be sent.
ios2_Data - Abstract data structure which packet data is
contained in.

RESULTS
ios2_DstAddr - The contents of this field are to be
considered trash upon return of the IOReq.
ios2_Error - Zero if successful; non-zero otherwise.
This command can fail for many reasons and
is not supported by all networks and/or
network interfaces.
ios2_WireError - More specific error number.
NOTES

The DstAddr field may be trashed by the driver because this function
may be implemented by filling DstAddr with a broadcast address and
internally calling CMD_WRITE.

SEE ALSO
CMD_WRITE, S2_MULTICAST

39

A.16 sana2.device/S2_CONFIGINTERFACE

sana2.device/S2_CONFIGINTERFACE sana2.device/S2_CONFIGINTERFACE
NAME
ConfigInterface -- Configure the network interface.
FUNCTION

This command causes the device driver to initialize the interface
hardware and to set the network interface address to the address in
ios2_SrcAddr. This command can only be executed once and, if
successful, will leave the driver and network interface fully
operational and the network interface in ios2_SrcAddr.

To set the interface address to the factory address, the network
management software must use GetStationAddress first and then call
ConfigInterface with the result. If there is no factory address then
the network software must pick an address to use.

Until this command is executed the device will not listen for any
packets on the hardware.

I0 REQUEST

ios2_Command - S2_CONFIGINTERFACE.

ios2_Flags - Supported flags are:

SANA2I0B_QUICK

ios2_SrcAddr - Address for this interface.
RESULTS

ios2_Error - Zero if successful; non-zero otherwise.

ios2_WireError - More specific error number.

ios2_SrcAddr - Address of this interface as configured.
NOTES

Some networks have the interfaces choose a currently unused interface
address each time the interface is initialized. The caller must check
ios2_SrcAddr for the actual interface address after configuring the
interface.

SEE ALSO
S2_GETSTATIONADDRESS

40

A.17 sana2.device/S2_DELMULTICASTADDRESS

sana2.device/S2_DELMULTICASTADDRESS sana2.device/S2_DELMULTICASTADDRESS
NAME
DelMultiCastAddress -- Disable an interface multicast address.
FUNCTION

This command causes device driver to disable multicast packet
reception for the requested address.

It is an error to disable a multicast address that is not enabled.

I0 REQUEST
ios2_Command - S2_DELMULTICASTADDRESS
ios2_SrcAddr - Multicast address to disable.
RESULTS
ios2_Error - Zero if successful; non-zero otherwise.
ios2_WireError - More specific error number.
NOTES
Multicast addresses are added globally -- anyone using the device

may receive packets as a result of any multicast address which has
been added for the device.

Since multicast addresses are not "bound" to a particular packet type,
each enabled multicast address has an "enabled" count associated with
it so that if two protocols add the same multicast address and later
one removes it, it is still enabled until the second removes it.

SEE ALSO
S2_ADDMULTICASTADDRESS

41

A.18 sana2.device/S2_DELMULTICASTADDRESSES

sana2.device/S2_DELMULTICASTADDRESSES sana2.device/S2_DELMULTICASTADDRESSES
NAME
DelMultiCastAddresses -- Disable a range of interface multicast addresses.
FUNCTION

This command causes the device driver to disable multicast packet
reception for the requested address range.

It is an error to disable a multicast address range that is not enabled.

I0 REQUEST
ios2_Command - S2_DELMULTICASTADDRESSES
ios2_SrcAddr - Lowest Multicast address to disable.
ios2_DstAddr - Highest Multicast address to disable.
RESULTS
ios2_Error - Zero if successful; non-zero otherwise.
ios2_WireError - More specific error number.
NOTES
Multicast address ranges are added globally -- anyone using the device

may receive packets as a result of any multicast address range which
has been added for the device.

Since multicast address ranges are not "bound" to a particular packet
type, each enabled multicast address range has an "enabled" count
associated with it so that if two protocols add the same multicast
address range and later one removes it, it is still enabled until

the second removes it.

The address range specified must exactly match an address range
used earlier in an S2_ADDMULTICASTADDRESSES call. The device driver
is not supposed to automatically merge consecutive address ranges,
to automatically split up address ranges, or to perform any other
types of "address range arithmetic" to support non-matching
addition/deletion requests.

It is an error to use S2_DELMULTICASTADDRESSES to disable a single
address added earlier with S2_ADDMULTICASTADDRESS, or to use
S2_DELMULTICASTADDRESS to disable an address range that consists of
just a single address and was added earlier with
S2_ADDMULTICASTADDRESSES.

SEE ALSO
S2_ADDMULTICASTADDRESSES

42

A.19 sana2.device/S2_DEVICEQUERY

sana2.device/S2_DEVICEQUERY sana2.device/S2_DEVICEQUERY
NAME
DeviceQuery -- Return parameters for this network interface.
FUNCTION

This command causes the device driver to report information about the
device. Up to SizeAvailable bytes of the information is copied

into a buffer pointed to by ios2_StatData. The format of the data is
as follows:

struct Sana2DeviceQuery

{
/%
** Standard information
*/
ULONG SizeAvailble; /* bytes available */
ULONG SizeSupplied; /* bytes supplied */
LONG DevQueryFormat; /* this is type 0 */
LONG DevicelLevel; /* this document is level 0 */
/*
**% Common information
*/
UWORD AddrFieldSize; /* address size in bits */
ULONG MTU; /* maximum packet data size */
LONG bps; /* line rate (bits/sec) */
LONG HardwareType; /* what the wire is */
/*
** Format specific information
*/
};

The SizeAvailable specifies the number of bytes that the caller
is prepared to accomodate, including the standard information fields.

SizeSupplied is the number of bytes actually supplied,
including the standard information fields, which will not exceed
SizeAvailable.

<devices/sana2.h> includes constants for these values. If your
hardware does not have a number assigned to it, you must contact
Amiga to get a hardware number.

I0 REQUEST
ios2_Command - S2_DEVICEQUERY.
ios2_StatData - Pointer to Sana2DeviceQuery structure to fill in.
RESULTS
ios2_Error - Zero if successful; non-zero otherwise.
ios2_WireError - More specific error number.

43

A.20 sana2.device/S2_GETGLOBALSTATS

sana?2.device/S2_GETGLOBALSTATS sana2.device/S2_GETGLOBALSTATS
NAME
GetGlobalStats -- Get interface accumulated statistics.
FUNCTION

This command causes the device driver to retrieve various global
runtime statistics for this network interface. The format of the
data returned is as follows:

struct Sana2DeviceStats

{
ULONG PacketsReceived;
ULONG PacketsSent;
ULONG BadData;
ULONG Overruns;
ULONG UnknownTypesReceived;
ULONG Reconfigurations;
timeval LastStart;
};
I0 REQUEST
ios2_Command - S2_GETGLOBALSTATS.
ios2_StatData - Pointer to Sana2DeviceStats structure to fill.
RESULTS
ios2_Error - Zero if successful; non-zero otherwise.
ios2_WireError - More specific error number.
SEE ALSO

S2_GETSPECIALSTATS

44

A.21 sana2.device/S2_GETSPECIALSTATS

sana2.device/S2_GETSPECIALSTATS sana2.device/S2_GETSPECIALSTATS
NAME
GetSpecialStats -- Get network type specific statistics.
FUNCTION

This function returns statistics which are specific to the type of
network medium this driver controls. For example, this command could
return statistics common to all Ethernets which are not common to all
network mediums in general.

The supplied Sana2SpecialStatData structure is given below:

struct Sana2SpecialStatData

{

ULONG RecordCountMax;

ULONG RecordCountSupplied;

struct Sana2StatRecord[RecordCountMax] ;
};

The format of the data returned is:

struct Sana2StatRecord

{
ULONG Type; /* Amiga registered */
LONG Count; /* the stat itself */
char #String; /* null terminated */
};

The RecordCountMax field specifies the number of records that the
caller is prepared to accomodate.

RecordCountSupplied is the number of record actually supplied which
will not exceed RecordCountMax.

I0 REQUEST
ios2_Command - S2_GETSPECIALSTATS.
ios2_StatData - Pointer to a Sana2SpecialStatData structure to fill.
RecordCountMax must be initialized.
RESULTS
ios2_Error - Zero if successful; non-zero otherwise.
ios2_WireError - More specific error number.
NOTES

Amiga will maintain registered statistic Types.

SEE ALSO
S2_GETGLOBALSTATS, <devices/sana2specialstats.h>

45

A.22 sana2.device/S2_GETSTATIONADDRESS

sana2.device/S2_GETSTATIONADDRESS sana2.device/S2_GETSTATIONADDRESS
NAME
GetStationAddress -- Get default and interface address.
FUNCTION

This command causes the device driver to copy the current interface
address into ios2_SrcAddr, and to copy the factory default station
address (if any) into ios2_DstAddr.

I0 REQUEST
ios2_Command - S2_GETSTATIONADDRESS.

RESULTS
ios2_Error - Zero if successful; non-zero otherwise.
ios2_WireError - More specific error number.
ios2_SrcAddr - Current interface address.
ios2_DstAddr - Default interface address (if any).

SEE ALSO

S2_CONFIGINTERFACE

46

A.23 sana2.device/S2_GETTYPESTATS

sana2.device/S2_GETTYPESTATS sana2.device/S2_GETTYPESTATS
NAME
GetTypeStats -- Get accumulated type specific statistics.
FUNCTION

This command causes the device driver to retrieve various packet type
specific runtime statistics for this network interface. The format of
the data returned is as follows:

struct Sana2TypeStatData

{
LONG PacketsSent;
LONG PacketsReceived;
LONG BytesSent;
LONG BytesReceived;
LONG PacketsDropped;
};
I0 REQUEST
ios2_Command - S2_GETTYPESTATS.
ios2_PacketType - Packet type of interest.
ios2_StatData - Pointer to TypeStatData structure to fill in.
RESULTS
ios2_Error - Zero if successful; non-zero otherwise.
ios2_WireError - More specific error number.
NOTES

Statistics for a particular packet type are only available while that
packet type is being ‘‘tracked’’.

SEE ALSO
S2_TRACKTYPE, S2_UNTRACKTYPE

47

A.24 sana2.device/S2_MULTICAST

sana?2.device/S2_MULTICAST

NAME

sana2.device/S2_MULTICAST

Multicast -- Multicast a packet on network.

FUNCTION

This command works the same as CMD_WRITE except that it also performs
whatever special processing of the packet is required to do a
multicast send. The actual multicast mechanism is neccessarily
network/interface/device specific.

I0 REQUEST
ios2_Command -
ios2_Flags -

ios2_PacketType -
ios2_DstAddr -
ios2_Datalength -
ios2_Data -

RESULTS
ios2_Error -

ios2_WireError -

NOTES

S2_MULTICAST.
Supported flags are:
SANA2I0B_RAW
SANA2I0B_QUICK
Packet type to send.
Destination interface address for this packet.
Length of the Data to be sent.
Abstract data structure which packet data is
contained in.

Zero if successful; non-zero otherwise.
This command can fail for many reasons and
is not supported by all networks and/or
network interfaces.

More specific error number.

The address supplied in ios2_DstAddr will be sanity checked (if
possible) by the driver. If the supplied address fails this sanity
check, the multicast request will fail immediately with ios2_Error
set to S2WERR_BAD_MULTICAST.

Another Amiga will not receive a multicast packet unless it has had
the particular multicast address being used S2_ADDMULTICASTADRESS’d.

SEE ALSO

CMD_WRITE, S2_BROADCAST, S2_ADDMULTICASTADDRESS

48

A.25 sana2.device/S2_OFFLINE

sana2.device/S2_0FFLINE sana2.device/S2_0FFLINE
NAME
Offline -- Remove interface from service.
FUNCTION

This command removes a network interface from service.

I0 REQUEST
ios2_Command - S2_0FFLINE.

RESULTS
ios2_Error - Zero if successful; non-zero otherwise.
ios2_WireError - More specific error number.

NOTES

Aborts all pending reads and writes with ios2_Error set to
S2ERR_OUTOFSERVICE.

While the interface is offline, all read, writes and any other
command that touches interface hardware will be rejected with

ios2_Error set to S2ERR_OUTOFSERVICE.

This command is intended to permit a network interface to be
tested on an otherwise live system.

SEE ALSO
S2_ONLINE

49

A.26 sana2.device/S2_ONEVENT

sana2.device/S2_0NEVENT sana2.device/S2_0NEVENT
NAME
OnEvent -- Return when specified event occures.
FUNCTION

This command returns when a particular event condition has occured
on the network or this network interface.

I0 REQUEST
ios2_Command - S2_0ONEVENT.
ios2_Flags - Supported flags are:
SANA2I0B_QUICK
ios2_WireError - Mask of event(s) to wait for
(from <devices/sana2.h>).
RESULTS
ios2_Error - Zero if successful; non-zero otherwise.
ios2_WireError - Mask of events that occured.
NOTES

If this device driver does not understand the specified event
condition(s) then the command returns immediately with
ios2_Req.io_Error set to S2_ERR_NOT_SUPPORTED and ios2_WireError
S2WERR_BAD_EVENT. A successful return will have ios2_Error set to
zero ios2_WireError set to the event number.

All pending requests for a particular event will be returned when
that event occurs.

All event types that cover a particular condition are returned when
that condition occures. For instance, if an error is returned by

a buffer management function during receive processing, events of
types S2EVENT_ERROR, S2EVENT_RX and S2EVENT_BUFF would be returned if
pending.

Types ONLINE and OFFLINE return immediately if the device is
already in the state to be waited for.

50

A.27 sana2.device/S2_ONLINE

sana2.device/S2_0ONLINE sana2.device/S2_0ONLINE
NAME
Online -- Put a network interface back in service.
FUNCTION

This command places an offline network interface back into service.

I0 REQUEST
ios2_Command - S2_ONLINE.

RESULTS
ios2_Error - Zero if successful; non-zero otherwise.
ios2_WireError - More specific error number.

NOTES

This command is responsible for putting the network interface
hardware back into a known state (as close as possible to the
state before S2_OFFLINE) and resets the unit global and special
statistics.

SEE ALSO
S2_O0FFLINE

51

A.28 sana2.device/S2_READORPHAN

sana2.device/S2_READORPHAN sana2.device/S2_READORPHAN
NAME
ReadOrphan -- Get a packet for which there is no reader.
FUNCTION

Get the next packet available that does not satisfy any then-pending
CMD_READ requests. The data returned in the ios2_Data structure is
normally the Data Link Layer packet type field and the packet data. If
bit SANA2IOB_RAW is set in ios2_Flags, then the entire Data Link Layer
packet, including both header and trailer information, will be

returned.

I0 REQUEST
ios2_Command - CMD_READORPHAN.
ios2_Flags - Supported flags are:

SANA2I0B_RAW
SANA2I0B_QUICK
ios2_Datalength - Length of the Data to be sent.
ios2_Data - Abstract data structure which packet data is
contained in.

RESULTS
ios2_Error - Zero if successful; non-zero otherwise.
ios2_WireError - More specific error number.
ios2_Flags - The following flags may be returned:
SANA2I0B_RAW
SANA2I0B_BCAST
SANA2I0B_MCAST
ios2_SrcAddr - Source interface address of packet.
ios2_DstAddr - Destination interface address of packet.
ios2_Datalength - Length of the Data to be sent.
ios2_Data - Abstract data structure which packet data is
contained in.
NOTES

This is intended for debugging and management tools. Protocols should
not use this.

As with 802.3 packets on an ethernet, to determine which protocol
family the returned packet belongs to you may have to specify
SANA2IOB_RAW to get the entire data link layer wrapper (which is where
the protocol type may be kept). Notice this necessarily means that
this cannot be done in a network interface independent fashion. The
driver will, however, fill in the PacketType field to the best of its
ability.

SEE ALSO
CMD_READ, CMD_WRITE

52

A.29 sana2.device/S2_TRACKTYPE

sana2.device/S2_TRACKTYPE sana2.device/S2_TRACKTYPE
NAME
TrackType -- Accumulate statistics about a packet type.
FUNCTION

This command causes the device driver to accumulate statistics about
a particular packet type. Packet type statistics, for the particular
packet type, are zeroed by this command.

I0 REQUEST
ios2_Command - S2_TRACKTYPE.
ios2_PacketType - Packet type of interest.

RESULTS
ios2_Error - Zero if successful; non-zero otherwise.
ios2_WireError - More specific error number.

SEE ALSO

S2_UNTRACKTYPE, S2_GETTYPESTATS

53

A.30 sana2.device/S2_UNTRACKTYPE

sana2.device/S2_UNTRACKTYPE sana2.device/S2_UNTRACKTYPE
NAME
UntrackType -- End statistics about a packet type.
FUNCTION

This command causes the device driver to stop accumulating
statistics about a particular packet type.

I0 REQUEST
ios2_Command S2_UNTRACKTYPE.
ios2_PacketType - Packet type of interest.

RESULTS
ios2_Error - Zero if successful; non-zero otherwise.
ios2_WireError - More specific error number.

SEE ALSO

S2_TRACKTYPE, S2_GETTYPESTATS

54

B Callback mechanism Autodocs

B.1

CopyFromBuff

CopyFromBuff CopyFromBuff
NAME
CopyFromBuff -- Copy n bytes from an abstract data structure.
SYNOPSIS

success = CopyFromBuff (to, from, n)
do a0 al do

BOOL CopyToBuff (VOID *, VOID *, ULONG);

FUNCTION

This function copies ’n’ bytes of data in the abstract data structure
pointed to by ’from’ into the contigous memory pointed to by ’to’.
’to’ must contain at least ’n’ bytes of usable memory or innocent
memory will be overwritten.

INPUTS
to - pointer to contiguous memory to copy to.
from - pointer to abstract structure to copy from.
n - number of bytes to copy.
RESULT
success - TRUE if operation was successful, else FALSE.
NOTES

This function must be callable from interrupts. In particular, this
means that this function may not directly or indirectly call any
system memory functions (since those functions rely on Forbid() to
protect themselves) and that you must not compile this function
with stack checking enabled. See the RKM:Libraries Exec:Interrupts
chapter for more details on what is legal in a routine called from
an interrupt handler.

’C’ programmers should not compile with stack checking (option ’-v’
in SAS) and should geta4() or __saveds.

55

B.2 CopyToBuff

CopyToBuff CopyToBuff
NAME
CopyToBuff -- Copy n bytes to an abstract data structure.
SYNOPSIS
success = CopyToBuff (to, from, n)
do a0 al do

BOOL CopyToBuff (VOID *, VOID *, ULONG);

FUNCTION
This function first does any initialization and/or allocation
required to prepare the abstract data structure pointed at by ’to’
to be filled with ’n’ bytes of data from ’from’. It then executes
the copy operation.

If, for example, there is not enough memory available to prepare
the abstract data structure, the call is failed and FALSE is returned.

The buffer management scheme should be such that any memory needed
to fulfill CopyToBuff() calls is already allocated from the system
before the call to CopyToBuff() is made.

INPUTS
to - pointer to abstract structure to copy to.
from - pointer to contiguous memory to copy from.
n - number of bytes to copy.
RESULT
success - TRUE if operation was successful, else FALSE.
NOTES

This function must be callable from interrupts. In particular, this
means that this function may not directly or indirectly call any
system memory functions (since those functions rely on Forbid() to
protect themselves) and that you must not compile this function
with stack checking enabled. See the RKM:Libraries Exec:Interrupts
chapter for more details on what is legal in a routine called from
an interrupt handler.

’C’ programmers should not compile with stack checking (option ’-v’
in SAS) and should geta4() or __saveds.

56

B.3 PacketFilter

PacketFilter PacketFilter
NAME
PacketFilter -- Perform filtering operation on CMD_READ’s.
SYNOPSIS
keep = PacketFilter(hook, ios2, data)
do a0 a2 al

BOOL PacketFilter(struct Hook *, struct I0Sana2Req *, APTR);

FUNCTION
This function (if supplied by a protocol stack) may be used to
reject packets before they are copied into a protocol stack’s
internal buffers.

The IOSana2Req structure should be set up to look (almost) exactly
as it would if it was successfully returned for the current packet.
Specifically, the fields that should be set up correctly are:

ios2->ios2_Datalength
ios2->ios2_SrcAddr
ios2->ios2_DstAddr

The "data" pointer must point to the beginning of the packet data
that is stored in contiguous memory. The data should NOT include
any hardware specific headers (unless of course the CMD_READ
request wanted RAW packets).

INPUTS
hook - pointer to the Hook originally supplied during
OpenDevice() .
ios2 - The IOSana2Req CMD_READ request that will be used
(the "object" of the Hook call).
data - The packet data (the "message" of the Hook call).
RESULT
success - TRUE if the driver should provide the packet to
the protocol stack, FALSE if the packet should be
ignored.
NOTES

This function must be callable from interrupts. In particular, this
means that this function may not directly or indirectly call any
system memory functions (since those functions rely on Forbid() to
protect themselves) and that you must not compile this function
with stack checking enabled. See the RKM:Libraries Exec:Interrupts
chapter for more details on what is legal in a routine called from
an interrupt handler.

’C’ programmers should not compile with stack checking (option ’-v’
in SAS) and should geta4() or __saveds.

What does packet filtering do? With the original ¢‘SANA-II Network
Device Driver Specification’’, a protocol stack could open a device
and ask for certain packet types. It got all the packets that matched
this type. As it turned out, this could be mighty inefficient if there
were packets that the protocol stack did not use at all. These would
go into read processing of the protocol stack and waste CPU time even
though they could have been easily identified on arrival.

o7

C Ethernet description

#define S2WireType_Ethernet 1

ios2_Datalength:
valid ethernet packets have 64 to 1500 bytes of data.

Address format:
Ethernet addresses consist of 47 bits of address information and
a 1 bit multicast flag. The standard for expressing ethernet
addresses is as 6 bytes (octets) in the order in which the bytes
are transmitted with the low-order bits in a byte transmitted
first. The multicast flag bit is the least-significant bit of the
first byte.

Ethernet addresses in a Sana2I0Req occupy the first 6 bytes of
an address field in transmission order with the low-order bits in
a byte transmitted first.

Station Address:
Each ethernet board must have a unique ethernet hardware address.
Drivers will override any attempt to set the address to anything
other than the ROM address.

Raw reads and writes:
6 bytes of destination address,
6 bytes of source address,
2 bytes of type,
64 to 1500 bytes of data
(followed by 4 byte CRC value covering all of the above
which is hardware generated and checked, hence not included
in even raw packets)

Multicast: Supported
Broadcast: Supported
Promiscuous: Supported

Packet Type Numbers for Ethernet are assigned by:

Xerox Corporation

Xerox Systems Institute

475 Oakmead Parkway, Sunnyvale, CA 94086
Attn: Ms. Fonda Pallone

(408) 737-4652

Some Common Packet Type Numbers:
decimal Hex Description

000 0000-05DC IEEE 802.3 Length Field

2048 0800 TCP/IP -- IP

2054 0806 TCP/IP -- ARP

32821 8035 TCP/IP -- RARP

32923 809B Appletalk

33011 80F3 AppleTalk AARP (Kinetics)
33100 814C SNMP

33079 8137-8138 Novell, Inc.

58

D ARCNET description

S2WireType_Arcnet 7

ios2_Datalength:
506 byte MTU (because of the possibility of two byte Types).
Packets of size 254, 255, or 256 bytes are padded to 257 bytes before
transmition.

Station Address:
ARCNET hardware may have addresses set with jumpers, DIP switches
or software. Different drivers may therefore behave differently
with S2_CONFIGINTERFACE.

Hardware addresses should be assigned by users from highest to lowest
because there is some efficiency gained in the token passing scheme
this way. For example, on a three node network, hardware numbers 254,
253 and 252 should be used rather than 1, 2 and 3.

Raw reads and writes:
Short Packets (1-253 bytes)

Destination Address (1 byte)

Source Address (1 byte)

Count (256-N-Type length) (1 byte)

Padding (to byte number Count)
Type (1 or 2 bytes)

Data (N bytes)

Long Packets (257-506 bytes)

Destination Address (1 byte)
Source Address (1 byte)
zero (1 byte)
Count (512-N-Type length) (1 byte)
Padding (to byte number Count)
Type (1 or 2 bytes)
Data (N bytes)
Multicast: Not Supported
Broadcast: Supported
Promiscuous: Generally Not Supported

Packet Type Numbers for ARCNET are assigned by:
Datapoint Corporation

Some Common Packet Type Numbers

decimal hex description

221 DD AppleTalk

240 FO TCP/IP -- IP (RFC 1051)

241 F1 TCP/IP -- ARP (RFC 1051)

212 FO TCP/IP Ip (RFC 1201, proposed)
213 F1 TCP/IP -- ARP (RFC 1201, proposed)
214 D6 TCP/IP -- RARP (RFC 1201, proposed)
247 F7 Banyan Vines

250 FA Novell IPX

59

E “sana.h” header file

#ifndef SANA2_SANA2DEVICE_H
#define SANA2_SANA2DEVICE_H 1

/*

*k $VER: sana2.h 50.1 (15.12.2002)

*% Includes Release 50.1

*%

*% Structure definitions for SANA-II devices.
*%

*ok (C) Copyright 1991-2002 Amiga, Inc.

*k All Rights Reserved

*/

#ifndef EXEC_TYPES_H
#include <exec/types.h>
#endif

#ifndef EXEC_PORTS_H
#include <exec/ports.h>
#endif

#ifndef EXEC_IO_H
#include <exec/io.h>
#endif

#ifndef EXEC_ERRORS_H
#include <exec/errors.h>
#endif

#ifndef DEVICES_TIMER_H
#include <devices/timer.h>
#endif

#ifndef UTILITY_TAGITEM_H

#include <utility/tagitem.h>
#endif

#define SANA2_MAX_ADDR_BITS (128)

#define SANA2_MAX_ADDR_BYTES ((SANA2_MAX_ADDR_BITS+7)/8)

struct IOSana2Req

{
struct IORequest ios2_Req;
ULONG ios2_WireError;
ULONG ios2_PacketType;

UBYTE ios2_SrcAddr [SANA2_MAX_ADDR_BYTES];
UBYTE ios2_DstAddr [SANA2_MAX_ADDR_BYTES];

ULONG ios2_Datalength;

VOID *ios2_Data;

VOID *ios2_StatData;

VOID *ios2_BufferManagement;
};

/*

** defines for the io_Flags field
*/

#define SANA2IOB_RAW ¢p)

/* wire type specific error
/* packet type

/* length of packet data
/* packet data
/* statistics data pointer

/* see SANA-II OpenDevice adoc

/* raw packet I/0 requested

#define SANA2IOF_RAW (1<<SANA2IOB_RAW)

60

/* source addr
/* dest address

*/

*/
*/
*/
*/
*/
*/

#define
#define

#define
#define

#define
#define

/*

SANA2I0B_BCAST
SANA2IOF _BCAST

SANA2IO0B_MCAST
SANA2IOF _MCAST

SANA2I0B_QUICK
SANA2IOF_QUICK

(6)

/* broadcast packet (received)

(1<<SANA2I0B_BCAST)

(8)

/* multicast packet (received)

(1<<SANA2I0B_MCAST)

(I0B_QUICK)
(I0F_QUICK)

x defines for OpenDevice() flags

*/
#define
#define

#define
#define

/*

SANA20PB_MINE
SANA20PF_MINE

SANA20PB_PROM
SANA20PF_PROM

0)

/*

/* exclusive access requested

(1<<SANA20PB_MINE)

(&)

/* promiscuous mode requested

(1<<SANA20PB_PROM)

** defines for OpenDevice() tags

*/
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define

S2_Dummy

S2_CopyToBuff

S2_CopyFromBuff
S2_PacketFilter
S2_CopyToBuff16

S2_CopyFromBuff16

S2_CopyToBuff32

S2_CopyFromBuff32
S2_DMACopyToBuff32

(TAG_USER

(S2_Dummy
(S2_Dummy
(82_Dummy
(S2_Dummy
(82_Dummy
(S2_Dummy
(82_Dummy
(S2_Dummy

S2_DMACopyFromBuff32 (S2_Dummy

struct Sana2DeviceQuery

{
/*

k%

*/

/*

*/

/*

k%
*%

Standard information

ULONG SizeAvailable;
ULONG SizeSupplied;
ULONG DevQueryFormat ;
ULONG DeviceLevel;

Common information

UWORD AddrFieldSize;
ULONG MTU;
ULONG BPS;
ULONG HardwareType;

Format specific information

defined Hardware types

o+ o+ o+ F o+ o+ o+

quick IO requested (0)

0xB0000)

1)
2)
3)
4)
5)
6)
7
8)
9)

bytes available
bytes supplied
this is type O
this document is level 0O

address size in bits
maximum packet data size
line rate (bits/sec)
what the wire is

If your hardware type isn’t listed below, contact Amiga to get a new

61

*/

*/

*/

** type number added for your hardware.

*/

#define S2WireType_Ethernet 1

#define S2WireType_IEEE802 6

#define S2WireType_Arcnet 7

#define S2WireType_LocalTalk 11

#define S2WireType_DyLAN 12

#define S2WireType_AmokNet 200 /* Amiga Floppy Port hardware */

#define S2WireType_Liana 202 /* Village Tronic parallel port hw */

#define S2WireType_PPP 253

#define S2WireType_SLIP 254

#define S2WireType_CSLIP 255 /* Compressed SLIP */

#define S2WireType_PLIP 420 /* SLIP over a parallel port */

struct Sana2PacketTypeStats

{
ULONG PacketsSent; /* transmitted count */
ULONG PacketsReceived; /* received count */
ULONG BytesSent; /* bytes transmitted count */
ULONG BytesReceived; /* bytes received count */
ULONG PacketsDropped; /* packets dropped count */

};

struct Sana2SpecialStatRecord

{
ULONG Type; /* statistic identifier */
ULONG Count; /* the statistic */
char *String; /* statistic name */

};

struct Sana2SpecialStatHeader

{
ULONG RecordCountMax; /* room available */
ULONG RecordCountSupplied; /* number supplied */
/* struct Sana2SpecialStatRecord[RecordCountMax]; */

};

struct Sana2DeviceStats

{
ULONG PacketsReceived; /* received count */
ULONG PacketsSent; /* transmitted count */
ULONG BadData; /* bad packets received */
ULONG Overruns; /* hardware miss count */
ULONG Unused; /* Unused field */
ULONG UnknownTypesReceived; /* orphan count */
ULONG Reconfigurations; /* network reconfigurations */
struct timeval LastStart; /* time of last online */

};

/*

** Device Commands

*/

#define S2_START (CMD_NONSTD)

62

#define S2_DEVICEQUERY (S2_START+ 0)
#define S2_GETSTATIONADDRESS (S2_START+ 1)
#define S2_CONFIGINTERFACE (S2_START+ 2)
#define S2_ADDMULTICASTADDRESS (S2_START+ 5)
#define S2_DELMULTICASTADDRESS (S2_START+ 6)

#define S2_MULTICAST (S2_START+ 7)
#define S2_BROADCAST (S2_START+ 8)
#define S2_TRACKTYPE (S2_START+ 9)
#define S2_UNTRACKTYPE (S2_START+10)
#define S2_GETTYPESTATS (S2_START+11)
#define S2_GETSPECIALSTATS (S2_START+12)
#define S2_GETGLOBALSTATS (S2_START+13)
#define S2_ONEVENT (S2_START+14)
#define S2_READORPHAN (S2_START+15)
#define S2_ONLINE (S2_START+16)
#define S2_OFFLINE (S2_START+17)
#define S2_END (S2_START+18)
/*

** Multicast address range extensions

*/

#define S2_ADDMULTICASTADDRESSES 0xC000
#define S2_DELMULTICASTADDRESSES 0xC001

/*

** defined errors for io_Error (see also <exec/errors.h>)

*/

#define S2ERR_NO_ERROR 0 /* peachy-keen */
#define S2ERR_NO_RESOURCES 1 /* resource allocation failure */
#define S2ERR_BAD_ARGUMENT 3 /* garbage somewhere */
#define S2ERR_BAD_STATE 4 /* inappropriate state */
#define S2ERR_BAD_ADDRESS 5 /* who? */
#define S2ERR_MTU_EXCEEDED 6 /* too much to chew */
#define S2ERR_NOT_SUPPORTED 8 /* hardware can’t support cmd */
#define S2ERR_SOFTWARE 9 /* software error detected */
#define S2ERR_OUTOFSERVICE 10 /* driver is OFFLINE */
#define S2ERR_TX_FAILURE 11 /* Transmission attempt failed */

/*
*x From <exec/errors.h>
*k

*k IOERR_OPENFAIL (-1) * device/unit failed to open *

*k I0ERR_ABORTED (-2) * request terminated early [after AbortI0O()] *
*k IOERR_NOCMD (-3) * command not supported by device *

*% IOERR_BADLENGTH (-4) * not a valid length (usually IO_LENGTH) *

*k IOERR_BADADDRESS (-5) * invalid address (misaligned or bad range) *
*k IOERR_UNITBUSY (-6) * device opens ok, but requested unit is busy *
*ok IOERR_SELFTEST (-7) * hardware failed self-test *

*/

/*

** defined errors for ios2_WireError

*/

#define S2WERR_GENERIC_ERROR 0 /* no specific info available */
#define S2WERR_NOT_CONFIGURED 1 /* unit not configured */
#define S2WERR_UNIT_ONLINE 2 /* unit is currently online */
#define S2WERR_UNIT_OFFLINE 3 /* unit is currently offline */
#define S2WERR_ALREADY_TRACKED 4 /* protocol already tracked */
#define S2WERR_NOT_TRACKED 5 /* protocol not tracked */
#define S2WERR_BUFF_ERROR 6 /* buff mgt func returned error */
#define S2WERR_SRC_ADDRESS 7 /* source address problem */
#define S2WERR_DST_ADDRESS 8 /* destination address problem */

63

#define
#define
#define
#define
#define
#define
#define
#define
#define

/*

S2WERR_BAD_BROADCAST 9
S2WERR_BAD_MULTICAST 10

S2WERR_MULTICAST_FULL 11
S2WERR_BAD_EVENT 12
S2WERR_BAD_STATDATA 13
S2WERR_IS_CONFIGURED 15
S2WERR_NULL_POINTER 16

S2WERR_TOO_MANY_RETRIES 17
S2WERR_RCVREL_HDW_ERR 18

**x defined events

*/

#define
#define
#define
#define
#define
#define
#define
#define

#endif

S2EVENT_ERROR (1L<<0)
S2EVENT_TX (1L<<1)
S2EVENT_RX (11<<2)
S2EVENT_ONLINE (1L<<3)
S2EVENT_OFFLINE (1L<<4)
S2EVENT_BUFF (1L<<5)
S2EVENT_HARDWARE (1L<<6)
S2EVENT_SOFTWARE (1L<<7)

/% SANA2_SANA2DEVICE_H */

/*

/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

broadcast address problem
multicast address problem
multicast address list full
unsupported event class
statdata failed sanity check
attempt to config twice

null pointer detected

tx failed - too many retries
Driver fixable HW error

error catch all

transmitter error catch all
receiver error catch all
unit is in service

unit is not in service

buff mgt function error
hardware error catch all
software error catch all

64

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

F

“sana2specialstats.h” header file

#ifndef SANA2_SANA2SPECIALSTATS_H
#define SANA2_SANA2SPECIALSTATS_H 1

/*
*ok
k%
*ok
k%
*ok
k%
*ok

*/

$VER: sana2specialstats.h 50.1 (15.12.2002)
Includes Release 50.1

Defined IDs for SANA-II special statistics.

(C) Copyright 1991-2002 Amiga, Inc.
All Rights Reserved

#ifndef SANA2_SANA2DEVICE_H
#include <devices/sana2.h>
#endif /* !SANA2_SANA2DEVICE_H */

/*

*x The SANA-II special statistic identifier is an unsigned 32 number.
** The upper 16 bits identify the network wire type to which the

** statistic applies and the lower 16 bits identify the particular

** statistic.

*k

*x If you desire to add a new statistic identifier, contact Amiga.

*/

/*

** defined ethernet special statistics

*/

#define S2SS_ETHERNET_BADMULTICAST ((((s2WireType_Ethernet)&0xffff)<<16) | 0x0000)
/*

** This count will record the number of times a received packet tripped

the hardware’s multicast filtering mechanism but was not actually in

** the current multicast table.

*/

#define S2SS_ETHERNET_RETRIES ((((s2WireType_Ethernet)&0xffff)<<16) |0x0001)
/*

** This count records the total number of retries which have resulted

*%

*/

from transmissions on this board.

#define S2SS_ETHERNET_FIFO_UNDERRUNS ((((S2WireType_Ethernet)&O0xffff)<<16) |0x0002)

/*
*%
*%

*/

This count records an error condition which indicates that the host
computer did not feed the network interface card at a high enough rate.

#endif /+ SANA2_SANA2SPECIALSTATS_H */

65

